These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33886257)

  • 1. Small-Molecule Tunnels in Metalloenzymes Viewed as Extensions of the Active Site.
    Banerjee R; Lipscomb JD
    Acc Chem Res; 2021 May; 54(9):2185-2195. PubMed ID: 33886257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Studies of the
    Jones JC; Banerjee R; Shi K; Aihara H; Lipscomb JD
    Biochemistry; 2020 Aug; 59(32):2946-2961. PubMed ID: 32692178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of methane monooxygenase catalysis based on size exclusion and quantum tunneling.
    Zheng H; Lipscomb JD
    Biochemistry; 2006 Feb; 45(6):1685-92. PubMed ID: 16460015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases.
    Wang W; Liang AD; Lippard SJ
    Acc Chem Res; 2015 Sep; 48(9):2632-9. PubMed ID: 26293615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.
    DiPrimio DJ; Holland PL
    J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating apoenzyme-coenzyme-substrate interactions of methane monooxygenase with an engineered active site for electron harvesting: a computational study.
    Zhang S; Karthikeyan R; Fernando SD
    J Mol Model; 2018 Nov; 24(12):347. PubMed ID: 30498917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tale of two methane monooxygenases.
    Ross MO; Rosenzweig AC
    J Biol Inorg Chem; 2017 Apr; 22(2-3):307-319. PubMed ID: 27878395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic oxidation of methane.
    Sirajuddin S; Rosenzweig AC
    Biochemistry; 2015 Apr; 54(14):2283-94. PubMed ID: 25806595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation.
    Sullivan JP; Dickinson D; Chase HA
    Crit Rev Microbiol; 1998; 24(4):335-73. PubMed ID: 9887367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutagenesis of the "leucine gate" to explore the basis of catalytic versatility in soluble methane monooxygenase.
    Borodina E; Nichol T; Dumont MG; Smith TJ; Murrell JC
    Appl Environ Microbiol; 2007 Oct; 73(20):6460-7. PubMed ID: 17704278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxylation of methane through component interactions in soluble methane monooxygenases.
    Lee SJ
    J Microbiol; 2016 Apr; 54(4):277-82. PubMed ID: 27033202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired metal complexes for energy-related photocatalytic small molecule transformation.
    Wu HL; Li XB; Tung CH; Wu LZ
    Chem Commun (Camb); 2020 Dec; 56(99):15496-15512. PubMed ID: 33300513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics.
    Wang VC; Maji S; Chen PP; Lee HK; Yu SS; Chan SI
    Chem Rev; 2017 Jul; 117(13):8574-8621. PubMed ID: 28206744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Leeuwenhoek Lecture 2000 the natural and unnatural history of methane-oxidizing bacteria.
    Dalton H
    Philos Trans R Soc Lond B Biol Sci; 2005 Jun; 360(1458):1207-22. PubMed ID: 16147517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of substrate access to active sites in bacterial multicomponent monooxygenase hydroxylases: X-ray crystal structure of xenon-pressurized phenol hydroxylase from Pseudomonas sp. OX1.
    McCormick MS; Lippard SJ
    Biochemistry; 2011 Dec; 50(51):11058-69. PubMed ID: 22136180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Resolution XFEL Structure of the Soluble Methane Monooxygenase Hydroxylase Complex with its Regulatory Component at Ambient Temperature in Two Oxidation States.
    Srinivas V; Banerjee R; Lebrette H; Jones JC; Aurelius O; Kim IS; Pham CC; Gul S; Sutherlin KD; Bhowmick A; John J; Bozkurt E; Fransson T; Aller P; Butryn A; Bogacz I; Simon P; Keable S; Britz A; Tono K; Kim KS; Park SY; Lee SJ; Park J; Alonso-Mori R; Fuller FD; Batyuk A; Brewster AS; Bergmann U; Sauter NK; Orville AM; Yachandra VK; Yano J; Lipscomb JD; Kern J; Högbom M
    J Am Chem Soc; 2020 Aug; 142(33):14249-14266. PubMed ID: 32683863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum chemical studies of methane monooxygenase: comparision with P450.
    Guallar V; Gherman BF; Lippard SJ; Friesner RA
    Curr Opin Chem Biol; 2002 Apr; 6(2):236-42. PubMed ID: 12039010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of substrate access to the active site in methane monooxygenase.
    Lee SJ; McCormick MS; Lippard SJ; Cho US
    Nature; 2013 Feb; 494(7437):380-4. PubMed ID: 23395959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crucial Role of the Chaperonin GroES/EL for Heterologous Production of the Soluble Methane Monooxygenase from Methylomonas methanica MC09.
    Zill D; Lettau E; Lorent C; Seifert F; Singh PK; Lauterbach L
    Chembiochem; 2022 Jun; 23(12):e202200195. PubMed ID: 35385600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.