These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 33886257)

  • 1. Small-Molecule Tunnels in Metalloenzymes Viewed as Extensions of the Active Site.
    Banerjee R; Lipscomb JD
    Acc Chem Res; 2021 May; 54(9):2185-2195. PubMed ID: 33886257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Studies of the
    Jones JC; Banerjee R; Shi K; Aihara H; Lipscomb JD
    Biochemistry; 2020 Aug; 59(32):2946-2961. PubMed ID: 32692178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of methane monooxygenase catalysis based on size exclusion and quantum tunneling.
    Zheng H; Lipscomb JD
    Biochemistry; 2006 Feb; 45(6):1685-92. PubMed ID: 16460015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases.
    Wang W; Liang AD; Lippard SJ
    Acc Chem Res; 2015 Sep; 48(9):2632-9. PubMed ID: 26293615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.
    DiPrimio DJ; Holland PL
    J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating apoenzyme-coenzyme-substrate interactions of methane monooxygenase with an engineered active site for electron harvesting: a computational study.
    Zhang S; Karthikeyan R; Fernando SD
    J Mol Model; 2018 Nov; 24(12):347. PubMed ID: 30498917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tale of two methane monooxygenases.
    Ross MO; Rosenzweig AC
    J Biol Inorg Chem; 2017 Apr; 22(2-3):307-319. PubMed ID: 27878395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation.
    Sullivan JP; Dickinson D; Chase HA
    Crit Rev Microbiol; 1998; 24(4):335-73. PubMed ID: 9887367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutagenesis of the "leucine gate" to explore the basis of catalytic versatility in soluble methane monooxygenase.
    Borodina E; Nichol T; Dumont MG; Smith TJ; Murrell JC
    Appl Environ Microbiol; 2007 Oct; 73(20):6460-7. PubMed ID: 17704278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxylation of methane through component interactions in soluble methane monooxygenases.
    Lee SJ
    J Microbiol; 2016 Apr; 54(4):277-82. PubMed ID: 27033202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired metal complexes for energy-related photocatalytic small molecule transformation.
    Wu HL; Li XB; Tung CH; Wu LZ
    Chem Commun (Camb); 2020 Dec; 56(99):15496-15512. PubMed ID: 33300513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics.
    Wang VC; Maji S; Chen PP; Lee HK; Yu SS; Chan SI
    Chem Rev; 2017 Jul; 117(13):8574-8621. PubMed ID: 28206744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum chemical studies of methane monooxygenase: comparision with P450.
    Guallar V; Gherman BF; Lippard SJ; Friesner RA
    Curr Opin Chem Biol; 2002 Apr; 6(2):236-42. PubMed ID: 12039010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crucial Role of the Chaperonin GroES/EL for Heterologous Production of the Soluble Methane Monooxygenase from Methylomonas methanica MC09.
    Zill D; Lettau E; Lorent C; Seifert F; Singh PK; Lauterbach L
    Chembiochem; 2022 Jun; 23(12):e202200195. PubMed ID: 35385600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for Substrate-Regulated P450 Catalysis: From Substrate Engineering to Co-catalysis.
    Xu J; Wang C; Cong Z
    Chemistry; 2019 May; 25(28):6853-6863. PubMed ID: 30698852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry.
    Armstrong FA; Evans RM; Hexter SV; Murphy BJ; Roessler MM; Wulff P
    Acc Chem Res; 2016 May; 49(5):884-92. PubMed ID: 27104487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane monooxygenase: functionalizing methane at iron and copper.
    Sazinsky MH; Lippard SJ
    Met Ions Life Sci; 2015; 15():205-56. PubMed ID: 25707469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and activation thermodynamics of methane monooxygenase compound Q formation and reaction with substrates.
    Brazeau BJ; Lipscomb JD
    Biochemistry; 2000 Nov; 39(44):13503-15. PubMed ID: 11063587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-molecular-weight analogues of the soluble methane monooxygenase (sMMO): from the structural mimicking of resting states and intermediates to functional models.
    Siewert I; Limberg C
    Chemistry; 2009 Oct; 15(40):10316-28. PubMed ID: 19780121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.