These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 33886300)
1. Comparison of Many-Particle Representations for Selected Configuration Interaction: II. Numerical Benchmark Calculations. Chilkuri VG; Neese F J Chem Theory Comput; 2021 May; 17(5):2868-2885. PubMed ID: 33886300 [TBL] [Abstract][Full Text] [Related]
2. Comparison of many-particle representations for selected-CI I: A tree based approach. Chilkuri VG; Neese F J Comput Chem; 2021 May; 42(14):982-1005. PubMed ID: 33764585 [TBL] [Abstract][Full Text] [Related]
4. Modular Approach to Selected Configuration Interaction in an Arbitrary Spin Basis: Implementation and Comparison of Approaches. Prentice AW; Coe JP; Paterson MJ J Chem Theory Comput; 2023 Dec; 19(24):9161-9176. PubMed ID: 38061390 [TBL] [Abstract][Full Text] [Related]
5. Iterative Configuration Interaction with Selection. Zhang N; Liu W; Hoffmann MR J Chem Theory Comput; 2020 Apr; 16(4):2296-2316. PubMed ID: 32069046 [TBL] [Abstract][Full Text] [Related]
6. A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks. Loos PF; Scemama A; Blondel A; Garniron Y; Caffarel M; Jacquemin D J Chem Theory Comput; 2018 Aug; 14(8):4360-4379. PubMed ID: 29966098 [TBL] [Abstract][Full Text] [Related]
7. Optimal Orbital Selection for Full Configuration Interaction (OptOrbFCI): Pursuing the Basis Set Limit under a Budget. Li Y; Lu J J Chem Theory Comput; 2020 Oct; 16(10):6207-6221. PubMed ID: 32786901 [TBL] [Abstract][Full Text] [Related]
8. Splitting multiple bonds: a comparison of methodologies on the accuracy of bond dissociation energies. Robinson D J Comput Chem; 2013 Nov; 34(30):2625-34. PubMed ID: 24037810 [TBL] [Abstract][Full Text] [Related]
9. Selected configuration interaction with truncation energy error and application to the Ne atom. Bunge CF J Chem Phys; 2006 Jul; 125(1):014107. PubMed ID: 16863287 [TBL] [Abstract][Full Text] [Related]
10. Selected Configuration Interaction in a Basis of Cluster State Tensor Products. Abraham V; Mayhall NJ J Chem Theory Comput; 2020 Oct; 16(10):6098-6113. PubMed ID: 32846094 [TBL] [Abstract][Full Text] [Related]
12. Many-Body Expanded Full Configuration Interaction. I. Weakly Correlated Regime. Eriksen JJ; Gauss J J Chem Theory Comput; 2018 Oct; 14(10):5180-5191. PubMed ID: 30125481 [TBL] [Abstract][Full Text] [Related]
13. Accurate energies of transition metal atoms, ions, and monoxides using selected configuration interaction and density-based basis-set corrections. Yao Y; Giner E; Anderson TA; Toulouse J; Umrigar CJ J Chem Phys; 2021 Nov; 155(20):204104. PubMed ID: 34852493 [TBL] [Abstract][Full Text] [Related]
14. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules. Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488 [TBL] [Abstract][Full Text] [Related]
15. Tailoring CIPSI Expansions for QMC Calculations of Electronic Excitations: The Case Study of Thiophene. Dash M; Moroni S; Filippi C; Scemama A J Chem Theory Comput; 2021 Jun; 17(6):3426-3434. PubMed ID: 34029098 [TBL] [Abstract][Full Text] [Related]
16. Benchmark of correlation matrix renormalization method in molecule calculations. Zhang H; Lu WC; Yao YX; Wang CZ; Ho KM J Phys Condens Matter; 2019 May; 31(19):195902. PubMed ID: 30736027 [TBL] [Abstract][Full Text] [Related]
17. Comparison of fully internally and strongly contracted multireference configuration interaction procedures. Sivalingam K; Krupicka M; Auer AA; Neese F J Chem Phys; 2016 Aug; 145(5):054104. PubMed ID: 27497536 [TBL] [Abstract][Full Text] [Related]
19. Calculation of electron-hole recombination probability using explicitly correlated Hartree-Fock method. Elward JM; Thallinger B; Chakraborty A J Chem Phys; 2012 Mar; 136(12):124105. PubMed ID: 22462833 [TBL] [Abstract][Full Text] [Related]
20. Communication: Toward an improved control of the fixed-node error in quantum Monte Carlo: The case of the water molecule. Caffarel M; Applencourt T; Giner E; Scemama A J Chem Phys; 2016 Apr; 144(15):151103. PubMed ID: 27389201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]