These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 33886554)

  • 1. Constitutive G protein coupling profiles of understudied orphan GPCRs.
    Lu S; Jang W; Inoue A; Lambert NA
    PLoS One; 2021; 16(4):e0247743. PubMed ID: 33886554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Bioluminescence Resonance Energy Transfer (BRET) to Characterize Agonist-Induced Arrestin Recruitment to Modified and Unmodified G Protein-Coupled Receptors.
    Donthamsetti P; Quejada JR; Javitch JA; Gurevich VV; Lambert NA
    Curr Protoc Pharmacol; 2015 Sep; 70():2.14.1-2.14.14. PubMed ID: 26331887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells.
    Wan Q; Okashah N; Inoue A; Nehmé R; Carpenter B; Tate CG; Lambert NA
    J Biol Chem; 2018 May; 293(19):7466-7473. PubMed ID: 29523687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioluminescence resonance energy transfer (BRET) to detect the interactions between kappa opioid receptor and non visual arrestins.
    Bedini A
    Methods Mol Biol; 2015; 1230():115-28. PubMed ID: 25293320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins.
    Bedini A
    Methods Mol Biol; 2021; 2201():45-58. PubMed ID: 32975788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-Arrestin-2 BRET Biosensors Detect Different β-Arrestin-2 Conformations in Interaction with GPCRs.
    Oishi A; Dam J; Jockers R
    ACS Sens; 2020 Jan; 5(1):57-64. PubMed ID: 31849219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods to Monitor the Trafficking of β-Arrestin/G Protein-Coupled Receptor Complexes Using Enhanced Bystander BRET.
    Cao Y; Namkung Y; Laporte SA
    Methods Mol Biol; 2019; 1957():59-68. PubMed ID: 30919346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time monitoring of receptor and G-protein interactions in living cells.
    Galés C; Rebois RV; Hogue M; Trieu P; Breit A; Hébert TE; Bouvier M
    Nat Methods; 2005 Mar; 2(3):177-84. PubMed ID: 15782186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agonist-induced formation of unproductive receptor-G
    Okashah N; Wright SC; Kawakami K; Mathiasen S; Zhou J; Lu S; Javitch JA; Inoue A; Bouvier M; Lambert NA
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21723-21730. PubMed ID: 32817560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro profiling of orphan G protein coupled receptor (GPCR) constitutive activity.
    Watkins LR; Orlandi C
    Br J Pharmacol; 2021 Aug; 178(15):2963-2975. PubMed ID: 33784795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Third-party bioluminescence resonance energy transfer indicates constitutive association of membrane proteins: application to class a g-protein-coupled receptors and g-proteins.
    Kuravi S; Lan TH; Barik A; Lambert NA
    Biophys J; 2010 May; 98(10):2391-9. PubMed ID: 20483349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of β-Arrestin-Mediated G Protein-Coupled Receptor Ubiquitination Using BRET.
    Nagi K; Shenoy SK
    Methods Mol Biol; 2019; 1957():93-104. PubMed ID: 30919349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effector membrane translocation biosensors reveal G protein and βarrestin coupling profiles of 100 therapeutically relevant GPCRs.
    Avet C; Mancini A; Breton B; Le Gouill C; Hauser AS; Normand C; Kobayashi H; Gross F; Hogue M; Lukasheva V; St-Onge S; Carrier M; Héroux M; Morissette S; Fauman EB; Fortin JP; Schann S; Leroy X; Gloriam DE; Bouvier M
    Elife; 2022 Mar; 11():. PubMed ID: 35302493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-mass MALDI-MS unravels ligand-mediated G protein-coupling selectivity to GPCRs.
    Wu N; Olechwier AM; Brunner C; Edwards PC; Tsai CJ; Tate CG; Schertler GFX; Schneider G; Deupi X; Zenobi R; Ma P
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34326250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time analysis of agonist-induced activation of protease-activated receptor 1/Galphai1 protein complex measured by bioluminescence resonance energy transfer in living cells.
    Ayoub MA; Maurel D; Binet V; Fink M; Prézeau L; Ansanay H; Pin JP
    Mol Pharmacol; 2007 May; 71(5):1329-40. PubMed ID: 17267663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biased signaling at chemokine receptors.
    Corbisier J; Galès C; Huszagh A; Parmentier M; Springael JY
    J Biol Chem; 2015 Apr; 290(15):9542-54. PubMed ID: 25614627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complementary roles of the DRY motif and C-terminus tail of GPCRS for G protein coupling and beta-arrestin interaction.
    Kim KM; Caron MG
    Biochem Biophys Res Commun; 2008 Feb; 366(1):42-7. PubMed ID: 18036556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein-coupled receptors (GPCRS).
    Bertrand L; Parent S; Caron M; Legault M; Joly E; Angers S; Bouvier M; Brown M; Houle B; Ménard L
    J Recept Signal Transduct Res; 2002; 22(1-4):533-41. PubMed ID: 12503639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring Recruitment of β-Arrestin to G Protein-Coupled Heterodimers Using Bioluminescence Resonance Energy Transfer.
    Fillion D; Devost D; Hébert TE
    Methods Mol Biol; 2019; 1957():83-91. PubMed ID: 30919348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of GPCR/beta-arrestin interactions in live cells using bioluminescence resonance energy transfer technology.
    Kocan M; Pfleger KD
    Methods Mol Biol; 2009; 552():305-17. PubMed ID: 19513659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.