These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 33886677)
21. Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Figueroa B; Ailor E; Osborne D; Hardwick JM; Reff M; Betenbaugh MJ Biotechnol Bioeng; 2007 Jul; 97(4):877-92. PubMed ID: 17099908 [TBL] [Abstract][Full Text] [Related]
22. Ectoine enhances recombinant antibody production in Chinese hamster ovary cells by promoting cell cycle arrest. Jarusintanakorn S; Mastrobattista E; Yamabhai M N Biotechnol; 2024 Nov; 83():56-65. PubMed ID: 38945523 [TBL] [Abstract][Full Text] [Related]
23. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616 [TBL] [Abstract][Full Text] [Related]
24. Effect of sodium butyrate on the assembly, charge variants, and galactosylation of antibody produced in recombinant Chinese hamster ovary cells. Hong JK; Lee SM; Kim KY; Lee GM Appl Microbiol Biotechnol; 2014 Jun; 98(12):5417-25. PubMed ID: 24557571 [TBL] [Abstract][Full Text] [Related]
25. Glycoengineering Chinese hamster ovary cells: a short history. Donini R; Haslam SM; Kontoravdi C Biochem Soc Trans; 2021 Apr; 49(2):915-931. PubMed ID: 33704400 [TBL] [Abstract][Full Text] [Related]
26. Combinatorial genome and protein engineering yields monoclonal antibodies with hypergalactosylation from CHO cells. Chung CY; Wang Q; Yang S; Ponce SA; Kirsch BJ; Zhang H; Betenbaugh MJ Biotechnol Bioeng; 2017 Dec; 114(12):2848-2856. PubMed ID: 28926673 [TBL] [Abstract][Full Text] [Related]
27. Applications of low-intensity pulsed ultrasound to increase monoclonal antibody production in CHO cells using shake flasks or wavebags. Zhao Y; Xing J; Xing JZ; Ang WT; Chen J Ultrasonics; 2014 Aug; 54(6):1439-47. PubMed ID: 24841953 [TBL] [Abstract][Full Text] [Related]
28. Development of a Proline-Based Selection System for Reliable Genetic Engineering in Chinese Hamster Ovary Cells. Sun T; Kwok WC; Chua KJ; Lo TM; Potter J; Yew WS; Chesnut JD; Hwang IY; Chang MW ACS Synth Biol; 2020 Jul; 9(7):1864-1872. PubMed ID: 32470293 [TBL] [Abstract][Full Text] [Related]
29. Development of hyper osmotic resistant CHO host cells for enhanced antibody production. Kamachi Y; Omasa T J Biosci Bioeng; 2018 Apr; 125(4):470-478. PubMed ID: 29233458 [TBL] [Abstract][Full Text] [Related]
30. The use of catechins in Chinese hamster ovary cell media for the improvement of monoclonal antibody yields and a reduction of acidic species. Toronjo-Urquiza L; Acosta-Martin AE; James DC; Nagy T; Falconer RJ Biotechnol Prog; 2020 Jul; 36(4):e2980. PubMed ID: 32067358 [TBL] [Abstract][Full Text] [Related]
31. BiP Inducer X: An ER Stress Inhibitor for Enhancing Recombinant Antibody Production in CHO Cell Culture. Ha TK; Hansen AH; Kildegaard HF; Lee GM Biotechnol J; 2019 Oct; 14(10):e1900130. PubMed ID: 31161665 [TBL] [Abstract][Full Text] [Related]
32. All-trans retinoic acid in combination with sodium butyrate enhances specific monoclonal antibody productivity in recombinant CHO cell line. Rahimi-Zarchi M; Shojaosadati SA; Amiri MM; Jeddi-Tehrani M; Shokri F Bioprocess Biosyst Eng; 2018 Jul; 41(7):961-971. PubMed ID: 29619548 [TBL] [Abstract][Full Text] [Related]
33. Heuristic optimization of antibody production by Chinese hamster ovary cells. Sandadi S; Ensari S; Kearns B Biotechnol Prog; 2005; 21(5):1537-42. PubMed ID: 16209559 [TBL] [Abstract][Full Text] [Related]
34. Investigation into the impact of tyrosine on the product formation and quality attributes of mAbs in rCHO cell cultures. Zhang W; Liu X; Tang H; Zhang X; Zhou Y; Fan L; Wang H; Tan WS; Zhao L Appl Microbiol Biotechnol; 2020 Aug; 104(16):6953-6966. PubMed ID: 32577803 [TBL] [Abstract][Full Text] [Related]
35. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases. Zhou M; Crawford Y; Ng D; Tung J; Pynn AF; Meier A; Yuk IH; Vijayasankaran N; Leach K; Joly J; Snedecor B; Shen A J Biotechnol; 2011 Apr; 153(1-2):27-34. PubMed ID: 21392546 [TBL] [Abstract][Full Text] [Related]
36. The Augmenting Effects of the tDNA Insulator on Stable Expression of Monoclonal Antibody in Chinese Hamster Ovary Cells. Naderi F; Hashemi M; Bayat H; Mohammadian O; Pourmaleki E; Etemadzadeh MH; Rahimpour A Monoclon Antib Immunodiagn Immunother; 2018 Nov; 37(5):200-206. PubMed ID: 30362930 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of Chinese hamster ovary cell stability during repeated batch culture for large-scale antibody production. Kaneko Y; Sato R; Aoyagi H J Biosci Bioeng; 2010 Mar; 109(3):274-80. PubMed ID: 20159577 [TBL] [Abstract][Full Text] [Related]
38. Metabolic analysis of antibody producing Chinese hamster ovary cell culture under different stresses conditions. Badsha MB; Kurata H; Onitsuka M; Oga T; Omasa T J Biosci Bioeng; 2016 Jul; 122(1):117-24. PubMed ID: 26803706 [TBL] [Abstract][Full Text] [Related]