BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33887153)

  • 21. Effects of Angle of Epiglottis on Aerodynamic and Acoustic Parameters in Excised Canine Larynges.
    Zeng Q; Jiao Y; Huang X; Wang R; Bao H; Lamb JR; Le J; Zhuang P; Jiang J
    J Voice; 2019 Sep; 33(5):627-633. PubMed ID: 31543207
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flow fields and acoustics in a unilateral scarred vocal fold model.
    Murugappan S; Khosla S; Casper K; Oren L; Gutmark E
    Ann Otol Rhinol Laryngol; 2009 Jan; 118(1):44-50. PubMed ID: 19244963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phonation threshold pressure and flow in excised human larynges.
    Mau T; Muhlestein J; Callahan S; Weinheimer KT; Chan RW
    Laryngoscope; 2011 Aug; 121(8):1743-51. PubMed ID: 21792964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of an asymmetric anterior glottic web in an excised canine larynx model.
    Pulvermacher AC; Xue C; Leggon R; Mills R; Jiang JJ
    Eur Arch Otorhinolaryngol; 2017 Mar; 274(3):1609-1615. PubMed ID: 27826648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voice Outcome of Modified Frontolateral Partial Laryngectomy in Excised Canine Larynges and Finite Element Model.
    Xu H; Kvit AA; Devine EE; Ying X; Dong P
    Otolaryngol Head Neck Surg; 2014 Aug; 151(2):294-300. PubMed ID: 24850781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of dehydration on phonation in excised canine larynges.
    Jiang J; Verdolini K; Aquino B; Ng J; Hanson D
    Ann Otol Rhinol Laryngol; 2000 Jun; 109(6):568-75. PubMed ID: 10855568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of subglottal acoustics on laboratory models of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Sep; 120(3):1558-69. PubMed ID: 17004478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phonatory characteristics of the excised human larynx in comparison to other species.
    Alipour F; Finnegan EM; Jaiswal S
    J Voice; 2013 Jul; 27(4):441-7. PubMed ID: 23809568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vocal fold vibration in simulated head voice phonation in excised canine larynges.
    Shiotani A; Fukuda H; Kawaida M; Kanzaki J
    Eur Arch Otorhinolaryngol; 1996; 253(6):356-63. PubMed ID: 8858261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of vocal fold physiology from voice acoustics using machine learning.
    Zhang Z
    J Acoust Soc Am; 2020 Mar; 147(3):EL264. PubMed ID: 32237804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glottographic analysis of phonation in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1990 May; 99(5 Pt 1):396-402. PubMed ID: 2337319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the relation between subglottal pressure and fundamental frequency in phonation.
    Titze IR
    J Acoust Soc Am; 1989 Feb; 85(2):901-6. PubMed ID: 2926005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phonation threshold flow in elongated excised larynges.
    Jiang JJ; Regner MF; Tao C; Pauls S
    Ann Otol Rhinol Laryngol; 2008 Jul; 117(7):548-53. PubMed ID: 18700432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vortical flow field during phonation in an excised canine larynx model.
    Khosla S; Muruguppan S; Gutmark E; Scherer R
    Ann Otol Rhinol Laryngol; 2007 Mar; 116(3):217-28. PubMed ID: 17419527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phonatory effects of supraglottic structures in excised canine larynges.
    Finnegan EM; Alipour F
    J Voice; 2009 Jan; 23(1):51-61. PubMed ID: 17400425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aerodynamic and nonlinear dynamic acoustic analysis of tension asymmetry in excised canine larynges.
    Devine EE; Bulleit EE; Hoffman MR; McCulloch TM; Jiang JJ
    J Speech Lang Hear Res; 2012 Dec; 55(6):1850-61. PubMed ID: 22562826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chaos in voice, from modeling to measurement.
    Jiang JJ; Zhang Y; McGilligan C
    J Voice; 2006 Mar; 20(1):2-17. PubMed ID: 15964740
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Objective Parameter to Classify Voice Signals Based on Variation in Energy Distribution.
    Liu B; Polce E; Jiang J
    J Voice; 2019 Sep; 33(5):591-602. PubMed ID: 29785936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparing phonation threshold flow and pressure by abducting excised larynges.
    Hottinger DG; Tao C; Jiang JJ
    Laryngoscope; 2007 Sep; 117(9):1695-9. PubMed ID: 17762794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On pressure-frequency relations in the excised larynx.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2007 Oct; 122(4):2296-305. PubMed ID: 17902865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.