These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33887387)

  • 1. Dynamics of Modular Neuromotor Control of Walking and Running during Single and Dual Task Conditions.
    Walsh GS
    Neuroscience; 2021 Jun; 465():1-10. PubMed ID: 33887387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of muscle synergies for running between different foot strike patterns.
    Nishida K; Hagio S; Kibushi B; Moritani T; Kouzaki M
    PLoS One; 2017; 12(2):e0171535. PubMed ID: 28158258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. You are better off running than walking revisited: Does an acute vestibular imbalance affect muscle synergies?
    Fabre-Adinolfi D; Parietti-Winkler C; Pierret J; Lassalle-Kinic B; Frère J
    Hum Mov Sci; 2018 Dec; 62():150-160. PubMed ID: 30384183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking beyond preferred transition speed increases muscle activations with a shift from inverted pendulum to spring mass model in lower extremity.
    Shih Y; Chen YC; Lee YS; Chan MS; Shiang TY
    Gait Posture; 2016 May; 46():5-10. PubMed ID: 27131169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect Of Visual Dual-Tasking Interference On Walking In Healthy Young Adults.
    Kimura N; van Deursen R
    Gait Posture; 2020 Jun; 79():80-85. PubMed ID: 32361657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Cognitive-Task Type and Walking Speed on Dual-Task Gait in Healthy Adults.
    Wrightson JG; Ross EZ; Smeeton NJ
    Motor Control; 2016 Jan; 20(1):109-21. PubMed ID: 25823560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait and neuromuscular dynamics during level and uphill walking carrying military loads.
    Walsh GS; Harrison I
    Eur J Sport Sci; 2022 Sep; 22(9):1364-1373. PubMed ID: 34231431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexity, symmetry and variability of forward and backward walking at different speeds and transfer effects on forward walking: Implications for neural control.
    Walsh GS; Taylor Z
    J Biomech; 2019 Dec; 97():109377. PubMed ID: 31615643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal modulation of a common set of muscle synergies during unpredictable and predictable gait perturbations in older adults.
    Brüll L; Santuz A; Mersmann F; Bohm S; Schwenk M; Arampatzis A
    J Exp Biol; 2024 Apr; 227(7):. PubMed ID: 38506185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying foot placement variability and dynamic stability of movement to assess control mechanisms during forward and lateral running.
    Arshi AR; Mehdizadeh S; Davids K
    J Biomech; 2015 Nov; 48(15):4020-4025. PubMed ID: 26476766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leg Length Discrepancy: Dynamic Balance Response during Gait.
    Azizan NA; Basaruddin KS; Salleh AF; Sulaiman AR; Safar MJA; Rusli WMR
    J Healthc Eng; 2018; 2018():7815451. PubMed ID: 29983905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait Variability and Complexity during Single and Dual-Task Walking on Different Surfaces in Outdoor Environment.
    Nohelova D; Bizovska L; Vuillerme N; Svoboda Z
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower Local Dynamic Stability and Invariable Orbital Stability in the Activation of Muscle Synergies in Response to Accelerated Walking Speeds.
    Kibushi B; Hagio S; Moritani T; Kouzaki M
    Front Hum Neurosci; 2018; 12():485. PubMed ID: 30618674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of narrow base gait on mediolateral balance control in young and older adults.
    Arvin M; Mazaheri M; Hoozemans MJM; Pijnappels M; Burger BJ; Verschueren SMP; van Dieën JH
    J Biomech; 2016 May; 49(7):1264-1267. PubMed ID: 27018156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of speed on local dynamic stability of locomotion under different task constraints in running.
    Mehdizadeh S; Arshi AR; Davids K
    Eur J Sport Sci; 2014; 14(8):791-8. PubMed ID: 24720520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptations of walking pattern on a compliant surface to regulate dynamic stability.
    MacLellan MJ; Patla AE
    Exp Brain Res; 2006 Aug; 173(3):521-30. PubMed ID: 16491406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR; Sasaki K
    J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speed- and mode-dependent modulation of the center of mass trajectory in human gaits as revealed by Lissajous curves.
    Takiyama K; Yokoyama H; Kaneko N; Nakazawa K
    J Biomech; 2020 Sep; 110():109947. PubMed ID: 32827767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.