These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33887460)

  • 1. Predictive macroscopic modeling of cell growth, metabolism and monoclonal antibody production: Case study of a CHO fed-batch production.
    Ben Yahia B; Malphettes L; Heinzle E
    Metab Eng; 2021 Jul; 66():204-216. PubMed ID: 33887460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmented linear modeling of CHO fed-batch culture and its application to large scale production.
    Ben Yahia B; Gourevitch B; Malphettes L; Heinzle E
    Biotechnol Bioeng; 2017 Apr; 114(4):785-797. PubMed ID: 27869296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LC-HRMS-based targeted metabolomics for high-throughput and quantitative analysis of 21 growth inhibition-related metabolites in Chinese hamster ovary cell fed-batch cultures.
    Lai Z; Choudhury FK; Tang D; Liang X; Dean B; Misaghi S; Sangaraju D
    Biomed Chromatogr; 2022 May; 36(5):e5348. PubMed ID: 35083760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Single Dynamic Metabolic Model Can Describe mAb Producing CHO Cell Batch and Fed-Batch Cultures on Different Culture Media.
    Robitaille J; Chen J; Jolicoeur M
    PLoS One; 2015; 10(9):e0136815. PubMed ID: 26331955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells.
    Figueroa B; Ailor E; Osborne D; Hardwick JM; Reff M; Betenbaugh MJ
    Biotechnol Bioeng; 2007 Jul; 97(4):877-92. PubMed ID: 17099908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cysteine, asparagine, or glutamine limitations in Chinese hamster ovary cell batch and fed-batch cultures.
    Ghaffari N; Jardon MA; Krahn N; Butler M; Kennard M; Turner RFB; Gopaluni B; Piret JM
    Biotechnol Prog; 2020 Mar; 36(2):e2946. PubMed ID: 31823468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fed-batch performance profiles for mAb production using different intensified N - 1 seed strategies are CHO cell-line dependent.
    Tang Y; Xu J; Xu M; Huang Z; Santos J; He Q; Borys M; Khetan A
    Biotechnol Prog; 2024; 40(4):e3446. PubMed ID: 38415506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic analysis of antibody producing CHO cells in fed-batch production.
    Dean J; Reddy P
    Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the effect of temperature downshift on CHO cell growth, antibody titer and product quality by intracellular metabolite profiling and in vivo monitoring of redox state.
    Zhu Z; Chen X; Li W; Zhuang Y; Zhao Y; Wang G
    Biotechnol Prog; 2023; 39(4):e3352. PubMed ID: 37141532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.
    Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR
    Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-concentration staurosporine improves recombinant antibody productivity in Chinese hamster ovary cells without inducing cell death.
    Kido M; Idogaki H; Nishikawa K; Omasa T
    J Biosci Bioeng; 2020 Nov; 130(5):525-532. PubMed ID: 32800439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fed-Batch CHO Cell Culture for Lab-Scale Antibody Production.
    Fan Y; Ley D; Andersen MR
    Methods Mol Biol; 2018; 1674():147-161. PubMed ID: 28921435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of hyperosmolality application time on production, quality, and biopotency of monoclonal antibodies produced in CHO cell fed-batch and perfusion cultures.
    Qin J; Wu X; Xia Z; Huang Z; Zhang Y; Wang Y; Fu Q; Zheng C
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1217-1229. PubMed ID: 30554388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic trends of Chinese hamster ovary cells in biopharmaceutical production under batch and fed-batch conditions.
    Rish AJ; Drennen JK; Anderson CA
    Biotechnol Prog; 2022 Jan; 38(1):e3220. PubMed ID: 34676699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process.
    Calmels C; McCann A; Malphettes L; Andersen MR
    Metab Eng; 2019 Jan; 51():9-19. PubMed ID: 30227251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addition of valproic acid to CHO cell fed-batch cultures improves monoclonal antibody titers.
    Yang WC; Lu J; Nguyen NB; Zhang A; Healy NV; Kshirsagar R; Ryll T; Huang YM
    Mol Biotechnol; 2014 May; 56(5):421-8. PubMed ID: 24381145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of hyper osmotic resistant CHO host cells for enhanced antibody production.
    Kamachi Y; Omasa T
    J Biosci Bioeng; 2018 Apr; 125(4):470-478. PubMed ID: 29233458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures.
    Toussaint C; Henry O; Durocher Y
    J Biotechnol; 2016 Jan; 217():122-31. PubMed ID: 26603123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat shock protein 27 overexpression in CHO cells modulates apoptosis pathways and delays activation of caspases to improve recombinant monoclonal antibody titre in fed-batch bioreactors.
    Tan JG; Lee YY; Wang T; Yap MG; Tan TW; Ng SK
    Biotechnol J; 2015 May; 10(5):790-800. PubMed ID: 25740626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autophagy-inducing peptide increases CHO cell monoclonal antibody production in batch and fed-batch cultures.
    Braasch K; Kryworuchko M; Piret JM
    Biotechnol Bioeng; 2021 May; 118(5):1876-1883. PubMed ID: 33543765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.