BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33887646)

  • 1. Integrative analysis of the cuticular lipidome and transcriptome of Sorghum bicolor reveals cultivar differences in drought tolerance.
    Zhang X; Ni Y; Xu D; Busta L; Xiao Y; Jetter R; Guo Y
    Plant Physiol Biochem; 2021 Jun; 163():285-295. PubMed ID: 33887646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiomic analyses of two sorghum cultivars reveals the change of membrane lipids in their responses to water deficit.
    Xu D; Ni Y; Zhang X; Guo Y
    Plant Physiol Biochem; 2022 Apr; 176():44-56. PubMed ID: 35217329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome and Physiological Analyses of a Navel Orange Mutant with Improved Drought Tolerance and Water Use Efficiency Caused by Increases of Cuticular Wax Accumulation and ROS Scavenging Capacity.
    Liang B; Wan S; Ma Q; Yang L; Hu W; Kuang L; Xie J; Liu D; Liu Y
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cuticular transpiration is not affected by enhanced wax and cutin amounts in response to osmotic stress in barley.
    Shellakkutti N; Thangamani PD; Suresh K; Baales J; Zeisler-Diehl V; Klaus A; Hochholdinger F; Schreiber L; Kreszies T
    Physiol Plant; 2022 Jul; 174(4):e13735. PubMed ID: 35716005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of water deficiency on leaf cuticle lipids and gene expression networks in cotton (Gossypium hirsutum L.).
    Yang F; Han Y; Zhu QH; Zhang X; Xue F; Li Y; Luo H; Qin J; Sun J; Liu F
    BMC Plant Biol; 2022 Aug; 22(1):404. PubMed ID: 35978290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical profiles of cuticular waxes on various organs of Sorghum bicolor and their antifungal activities.
    Xiao Y; Li X; Yao L; Xu D; Li Y; Zhang X; Li Z; Xiao Q; Ni Y; Guo Y
    Plant Physiol Biochem; 2020 Oct; 155():596-604. PubMed ID: 32846395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A co-opted steroid synthesis gene, maintained in sorghum but not maize, is associated with a divergence in leaf wax chemistry.
    Busta L; Schmitz E; Kosma DK; Schnable JC; Cahoon EB
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33723068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves.
    Kim H; Choi D; Suh MC
    Plant Cell Rep; 2017 Jun; 36(6):815-827. PubMed ID: 28280927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular, chemical, and physiological analyses of sorghum leaf wax under post-flowering drought stress.
    Sanjari S; Shobbar ZS; Ghanati F; Afshari-Behbahanizadeh S; Farajpour M; Jokar M; Khazaei A; Shahbazi M
    Plant Physiol Biochem; 2021 Feb; 159():383-391. PubMed ID: 33450508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata.
    Yang J; Isabel Ordiz M; Jaworski JG; Beachy RN
    Plant Physiol Biochem; 2011 Dec; 49(12):1448-55. PubMed ID: 22078383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaf cuticle analyses: implications for the existence of cutan/non-ester cutin and its biosynthetic origin.
    Leide J; Nierop KGJ; Deininger AC; Staiger S; Riederer M; de Leeuw JW
    Ann Bot; 2020 Jun; 126(1):141-162. PubMed ID: 32222770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct Preflowering Drought Tolerance Strategies of
    Ogden AJ; Abdali S; Engbrecht KM; Zhou M; Handakumbura PP
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combination of genome-wide association study and transcriptome analysis in leaf epidermis identifies candidate genes involved in cuticular wax biosynthesis in Brassica napus.
    Jin S; Zhang S; Liu Y; Jiang Y; Wang Y; Li J; Ni Y
    BMC Plant Biol; 2020 Oct; 20(1):458. PubMed ID: 33023503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poa pratensis ECERIFERUM1 (PpCER1) is involved in wax alkane biosynthesis and plant drought tolerance.
    Wang D; Ni Y; Liao L; Xiao Y; Guo Y
    Plant Physiol Biochem; 2021 Feb; 159():312-321. PubMed ID: 33421907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exogenous Melatonin Improves Tolerance to Water Deficit by Promoting Cuticle Formation in Tomato Plants.
    Ding F; Wang G; Wang M; Zhang S
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30004432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microarray analysis of differentially expressed mRNAs and miRNAs in young leaves of sorghum under dry-down conditions.
    Pasini L; Bergonti M; Fracasso A; Marocco A; Amaducci S
    J Plant Physiol; 2014 Apr; 171(7):537-48. PubMed ID: 24655390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit.
    Kim KS; Park SH; Jenks MA
    J Plant Physiol; 2007 Sep; 164(9):1134-43. PubMed ID: 16904233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maize glossy6 is involved in cuticular wax deposition and drought tolerance.
    Li L; Du Y; He C; Dietrich CR; Li J; Ma X; Wang R; Liu Q; Liu S; Wang G; Schnable PS; Zheng J
    J Exp Bot; 2019 Jun; 70(12):3089-3099. PubMed ID: 30919902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression analysis of drought tolerance and cuticular wax biosynthesis in diploid and tetraploid induced wallflowers.
    Fakhrzad F; Jowkar A
    BMC Plant Biol; 2024 Apr; 24(1):330. PubMed ID: 38664602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yellow nutsedge WRI4-like gene improves drought tolerance in Arabidopsis thaliana by promoting cuticular wax biosynthesis.
    Cheng C; Hu S; Han Y; Xia D; Huang BL; Wu W; Hussain J; Zhang X; Huang B
    BMC Plant Biol; 2020 Oct; 20(1):498. PubMed ID: 33129252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.