These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 33887710)
1. Nitrogen-doped graphene supported Ni as an efficient and stable catalyst for levulinic acid hydrogenation. Ding Q; Wang Y; Ma L Nanotechnology; 2022 Jun; 33(35):. PubMed ID: 33887710 [TBL] [Abstract][Full Text] [Related]
2. Vapor-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone Over Bi-Functional Ni/HZSM-5 Catalyst. Popova M; Djinović P; Ristić A; Lazarova H; Dražić G; Pintar A; Balu AM; Novak Tušar N Front Chem; 2018; 6():285. PubMed ID: 30065923 [TBL] [Abstract][Full Text] [Related]
3. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions. Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298 [TBL] [Abstract][Full Text] [Related]
5. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984 [TBL] [Abstract][Full Text] [Related]
6. Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts. Popova M; Trendafilova I; Oykova M; Mitrev Y; Shestakova P; Mihályi MR; Szegedi Á Molecules; 2022 Aug; 27(17):. PubMed ID: 36080151 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Hydrogenation of Levulinic Acid over Ordered Mesoporous Alumina-Supported Catalysts: Elucidating the Effect of Fabrication Strategy. Raguindin RQ; Desalegn BZ; Vishwanath H; Gebresillase MN; Seo JG ChemSusChem; 2022 Mar; 15(5):e202102662. PubMed ID: 34997688 [TBL] [Abstract][Full Text] [Related]
8. Noble Metal-Free Hierarchical ZrY Zeolite Efficient for Hydrogenation of Biomass-Derived Levulinic Acid. Hu D; Xu H; Wu Z; Zhang M; Zhao Z; Wang Y; Yan K Front Chem; 2021; 9():725175. PubMed ID: 34712649 [TBL] [Abstract][Full Text] [Related]
9. γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis. Córdova-Pérez GE; Cortez-Elizalde J; Silahua-Pavón AA; Cervantes-Uribe A; Arévalo-Pérez JC; Cordero-Garcia A; de Los Monteros AEE; Espinosa-González CG; Godavarthi S; Ortiz-Chi F; Guerra-Que Z; Torres-Torres JG Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745357 [TBL] [Abstract][Full Text] [Related]
10. Hydrogenation of Furfural with Nickel Nanoparticles Stabilized on Nitrogen-Rich Carbon Core-Shell and Its Transformations for the Synthesis of γ-Valerolactone in Aqueous Conditions. Nandi S; Saha A; Patel P; Khan NH; Kureshy RI; Panda AB ACS Appl Mater Interfaces; 2018 Jul; 10(29):24480-24490. PubMed ID: 29978701 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient selective hydrogenation of levulinic acid to γ-valerolactone over Cu-Re/TiO Liu Y; Liu K; Zhang M; Zhang K; Ma J; Xiao S; Wei Z; Deng S RSC Adv; 2021 Dec; 12(1):602-610. PubMed ID: 35424528 [TBL] [Abstract][Full Text] [Related]
12. Amine-promoted Ru Yang Y; Yang F; Wang H; Zhou B; Hao S J Colloid Interface Sci; 2021 Jan; 581(Pt A):167-176. PubMed ID: 32771728 [TBL] [Abstract][Full Text] [Related]
13. Highly efficient CuNi-ZrO Ding Y; Sun J; Hu R; He D; Qiu X; Luo C; Jiang P RSC Adv; 2024 Aug; 14(38):27481-27487. PubMed ID: 39221133 [TBL] [Abstract][Full Text] [Related]
14. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source. Yu Z; Lu X; Xiong J; Li X; Bai H; Ji N ChemSusChem; 2020 Jun; 13(11):2916-2930. PubMed ID: 32153131 [TBL] [Abstract][Full Text] [Related]
15. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media. Seretis A; Diamantopoulou P; Thanou I; Tzevelekidis P; Fakas C; Lilas P; Papadogianakis G Front Chem; 2020; 8():221. PubMed ID: 32373576 [TBL] [Abstract][Full Text] [Related]
16. Electrodeposited Ni-Rich Ni-Pt Mesoporous Nanowires for Selective and Efficient Formic Acid-Assisted Hydrogenation of Levulinic Acid to γ-Valerolactone. Serrà A; Artal R; Philippe L; Gómez E Langmuir; 2021 Apr; 37(15):4666-4677. PubMed ID: 33826345 [TBL] [Abstract][Full Text] [Related]
17. Preparation of Ru/Graphene using Glucose as Carbon Source and Hydrogenation of Levulinic Acid to γ-Valerolactone. Wu L; Song J; Zhou B; Wu T; Jiang T; Han B Chem Asian J; 2016 Oct; 11(19):2792-2796. PubMed ID: 27305341 [TBL] [Abstract][Full Text] [Related]
18. Highly Efficient Hydrogenation of Levulinic Acid into γ-Valerolactone using an Iron Pincer Complex. Yi Y; Liu H; Xiao LP; Wang B; Song G ChemSusChem; 2018 May; 11(9):1474-1478. PubMed ID: 29575709 [TBL] [Abstract][Full Text] [Related]
19. Efficient Vapor-Phase Selective Hydrogenolysis of Bio-Levulinic Acid to γ-Valerolactone Using Cu Supported on Hydrotalcite Catalysts. Mitta H; Seelam PK; Chary KVR; Mutyala S; Boddula R; Inamuddin ; Asiri AM Glob Chall; 2018 Dec; 2(12):1800028. PubMed ID: 30774979 [TBL] [Abstract][Full Text] [Related]
20. Catalytic hydrogenation of levulinic acid to γ-valerolactone over lignin-metal coordinated carbon nanospheres in water. Xu Y; Liang Y; Guo H; Qi X Int J Biol Macromol; 2023 Jun; 240():124451. PubMed ID: 37062379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]