BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33887937)

  • 1. Coupled cluster benchmarks of large noncovalent complexes: The L7 dataset as well as DNA-ellipticine and buckycatcher-fullerene.
    Ballesteros F; Dunivan S; Lao KU
    J Chem Phys; 2021 Apr; 154(15):154104. PubMed ID: 33887937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled Cluster Benchmarking of Large Noncovalent Complexes in L7 and S12L as Well as the C
    Villot C; Ballesteros F; Wang D; Lao KU
    J Phys Chem A; 2022 Jul; 126(27):4326-4341. PubMed ID: 35766331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a less costly but accurate calculation of the CCSD(T)/CBS noncovalent interaction energy.
    Chen JL; Sun T; Wang YB; Wang W
    J Comput Chem; 2020 May; 41(13):1252-1260. PubMed ID: 32045021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmark theoretical study of the π-π binding energy in the benzene dimer.
    Miliordos E; Aprà E; Xantheas SS
    J Phys Chem A; 2014 Sep; 118(35):7568-78. PubMed ID: 24761749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is It Possible To Obtain Coupled Cluster Quality Energies at near Density Functional Theory Cost? Domain-Based Local Pair Natural Orbital Coupled Cluster vs Modern Density Functional Theory.
    Liakos DG; Neese F
    J Chem Theory Comput; 2015 Sep; 11(9):4054-63. PubMed ID: 26575901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The curious case of DMSO: A CCSD(T)/CBS(aQ56+d) benchmark and DFT study.
    Olive LN; Dornshuld EV; Webster CE
    J Chem Phys; 2021 Sep; 155(11):114304. PubMed ID: 34551533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods.
    Minenkov Y; Wang H; Wang Z; Sarathy SM; Cavallo L
    J Chem Theory Comput; 2017 Aug; 13(8):3537-3560. PubMed ID: 28636351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules.
    Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F
    J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems.
    Cho Y; Cho WJ; Youn IS; Lee G; Singh NJ; Kim KS
    Acc Chem Res; 2014 Nov; 47(11):3321-30. PubMed ID: 25338296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaching the Basis Set Limit of CCSD(T) Energies for Large Molecules with Local Natural Orbital Coupled-Cluster Methods.
    Nagy PR; Kállay M
    J Chem Theory Comput; 2019 Oct; 15(10):5275-5298. PubMed ID: 31465219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of spin-component-scaled Møller-Plesset theory (SCS-MP2) for potential energy curves of noncovalent interactions.
    Takatani T; David Sherrill C
    Phys Chem Chem Phys; 2007 Dec; 9(46):6106-14. PubMed ID: 18167585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HFLD: A Nonempirical London Dispersion-Corrected Hartree-Fock Method for the Quantification and Analysis of Noncovalent Interaction Energies of Large Molecular Systems †.
    Altun A; Neese F; Bistoni G
    J Chem Theory Comput; 2019 Nov; 15(11):5894-5907. PubMed ID: 31538779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basis set convergence of the coupled-cluster correction, δ(MP2)(CCSD(T)): best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases.
    Marshall MS; Burns LA; Sherrill CD
    J Chem Phys; 2011 Nov; 135(19):194102. PubMed ID: 22112061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guest-Host Interactions in Clathrate Hydrates: Benchmark MP2 and CCSD(T)/CBS Binding Energies of CH
    Heindel JP; Herman KM; Aprà E; Xantheas SS
    J Phys Chem Lett; 2021 Aug; 12(31):7574-7582. PubMed ID: 34347487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved correlation energy extrapolation schemes based on local pair natural orbital methods.
    Liakos DG; Neese F
    J Phys Chem A; 2012 May; 116(19):4801-16. PubMed ID: 22489633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MP2.5 and MP2.X: approaching CCSD(T) quality description of noncovalent interaction at the cost of a single CCSD iteration.
    Sedlak R; Riley KE; Řezáč J; Pitoňák M; Hobza P
    Chemphyschem; 2013 Mar; 14(4):698-707. PubMed ID: 23315749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orbital-optimized MP2.5 and its analytic gradients: approaching CCSD(T) quality for noncovalent interactions.
    Bozkaya U; Sherrill CD
    J Chem Phys; 2014 Nov; 141(20):204105. PubMed ID: 25429931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basis set dependence of higher-order correlation effects in π-type interactions.
    Carrell EJ; Thorne CM; Tschumper GS
    J Chem Phys; 2012 Jan; 136(1):014103. PubMed ID: 22239765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward true DNA base-stacking energies: MP2, CCSD(T), and complete basis set calculations.
    Hobza P; Sponer J
    J Am Chem Soc; 2002 Oct; 124(39):11802-8. PubMed ID: 12296748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.