BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33888205)

  • 1. Determination of affinities of lanthanide-binding proteins using chelator-buffered titrations.
    Mattocks JA; Tirsch JL; Cotruvo JA
    Methods Enzymol; 2021; 651():23-61. PubMed ID: 33888205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing Lanmodulin's Lanthanide Recognition via Sensitized Luminescence Yields a Platform for Quantification of Terbium in Acid Mine Drainage.
    Featherston ER; Issertell EJ; Cotruvo JA
    J Am Chem Soc; 2021 Sep; 143(35):14287-14299. PubMed ID: 34432449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision Engineering of 2D Protein Layers as Chelating Biogenic Scaffolds for Selective Recovery of Rare-Earth Elements.
    Pallares RM; Charrier M; Tejedor-Sanz S; Li D; Ashby PD; Ajo-Franklin CM; Ralston CY; Abergel RJ
    J Am Chem Soc; 2022 Jan; 144(2):854-861. PubMed ID: 34985894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectrophotometric methods to probe the solution chemistry of lanthanide complexes with macromolecules.
    Deblonde GJ
    Methods Enzymol; 2021; 651():1-22. PubMed ID: 33888200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lanthanide Chemistry: From Coordination in Chemical Complexes Shaping Our Technology to Coordination in Enzymes Shaping Bacterial Metabolism.
    Martinez-Gomez NC; Vu HN; Skovran E
    Inorg Chem; 2016 Oct; 55(20):10083-10089. PubMed ID: 27588435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lanmodulin's EF 2-3 Domain: Insights from Infrared Spectroscopy and Simulations.
    Alasadi EA; Choi W; Chen X; Cotruvo JA; Baiz CR
    ACS Chem Biol; 2024 May; 19(5):1056-1065. PubMed ID: 38620063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lanthanide-Based Optical Probes of Biological Systems.
    Cho U; Chen JK
    Cell Chem Biol; 2020 Aug; 27(8):921-936. PubMed ID: 32735780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of quadruplex DNA by luminescence enhancement of lanthanide ions and energy transfer from lanthanide chelates.
    Worlinsky JL; Basu S
    J Phys Chem B; 2009 Jan; 113(4):865-8. PubMed ID: 19125634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of lanthanide fingers: compact lanthanide-binding metalloproteins.
    am Ende CW; Meng HY; Ye M; Pandey AK; Zondlo NJ
    Chembiochem; 2010 Aug; 11(12):1738-47. PubMed ID: 20623571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable 8-hydroxyquinolinate-based podates as efficient sensitizers of lanthanide near-infrared luminescence.
    Comby S; Imbert D; Chauvin AS; Bünzli JC
    Inorg Chem; 2006 Jan; 45(2):732-43. PubMed ID: 16411709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel polycarboxylated EDTA-type cyclodextrins as ligands for lanthanide binding: study of their luminescence, relaxivity properties of Gd(iii) complexes, and PM3 theoretical calculations.
    Maffeo D; Lampropoulou M; Fardis M; Lazarou YG; Mavridis IM; Mavridou DA; Urso E; Pratsinis H; Kletsas D; Yannakopoulou K
    Org Biomol Chem; 2010 Apr; 8(8):1910-21. PubMed ID: 20449498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and luminescence properties of lanthanide complexes with a new tripodal ligand featuring N-thenylsalicylamide arms.
    Song XQ; Zheng QF; Wang L; Liu WS
    Luminescence; 2012; 27(6):459-65. PubMed ID: 22223563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the interaction between trivalent lanthanide ions and stereoregular polymethacrylates through luminescence, binding isotherms, NMR, and interaction with cetylpyridinium chloride.
    Kogej K; Fonseca SM; Rovisco J; Azenha ME; Ramos ML; Seixas de Melo JS; Burrows HD
    Langmuir; 2013 Nov; 29(47):14429-37. PubMed ID: 24175706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isoquinoline-based lanthanide complexes: bright NIR optical probes and efficient MRI agents.
    Caillé F; Bonnet CS; Buron F; Villette S; Helm L; Petoud S; Suzenet F; Tóth E
    Inorg Chem; 2012 Feb; 51(4):2522-32. PubMed ID: 22233349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lanthanide-dependent coordination interactions in lanmodulin: a 2D IR and molecular dynamics simulations study.
    Liu S; Featherston ER; Cotruvo JA; Baiz CR
    Phys Chem Chem Phys; 2021 Oct; 23(38):21690-21700. PubMed ID: 34581354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and structural properties of lanthanide complexes formed with tropolonate ligands.
    Zhang J; Badger PD; Geib SJ; Petoud S
    Inorg Chem; 2007 Aug; 46(16):6473-82. PubMed ID: 17622139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMPED: a new platform for picolinate based luminescent lanthanide chelates.
    Guanci C; Giovenzana G; Lattuada L; Platas-Iglesias C; Charbonnière LJ
    Dalton Trans; 2015 Apr; 44(16):7654-61. PubMed ID: 25811295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination of mycotoxins with lanthanides in luminescent complexes.
    Hossain MZ; Maragos CM
    Mycotoxin Res; 2019 Aug; 35(3):279-292. PubMed ID: 30949954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biochemistry of lanthanide acquisition, trafficking, and utilization.
    Featherston ER; Cotruvo JA
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118864. PubMed ID: 32979423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA Intercalating Near-Infrared Luminescent Lanthanide Complexes Containing Dipyrido[3,2-
    Savić A; Kaczmarek AM; Van Deun R; Van Hecke K
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33203056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.