BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33888205)

  • 21. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides.
    Allred BE; Rupert PB; Gauny SS; An DD; Ralston CY; Sturzbecher-Hoehne M; Strong RK; Abergel RJ
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10342-7. PubMed ID: 26240330
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Webster AM; Peacock AFA
    Chem Commun (Camb); 2021 Jul; 57(56):6851-6862. PubMed ID: 34151325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double-lanthanide-binding tags: design, photophysical properties, and NMR applications.
    Martin LJ; Hähnke MJ; Nitz M; Wöhnert J; Silvaggi NR; Allen KN; Schwalbe H; Imperiali B
    J Am Chem Soc; 2007 Jun; 129(22):7106-13. PubMed ID: 17497862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Americium preferred: lanmodulin, a natural lanthanide-binding protein favors an actinide over lanthanides.
    Singer H; Drobot B; Zeymer C; Steudtner R; Daumann LJ
    Chem Sci; 2021 Dec; 12(47):15581-15587. PubMed ID: 35003587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications.
    Cotruvo JA
    ACS Cent Sci; 2019 Sep; 5(9):1496-1506. PubMed ID: 31572776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantifying the formation of chiral luminescent lanthanide assemblies in an aqueous medium through chiroptical spectroscopy and generation of luminescent hydrogels.
    Bradberry SJ; Savyasachi AJ; Peacock RD; Gunnlaugsson T
    Faraday Discuss; 2015; 185():413-31. PubMed ID: 26404059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterologous expression, purification, and characterization of proteins in the lanthanome.
    Featherston ER; Mattocks JA; Tirsch JL; Cotruvo JA
    Methods Enzymol; 2021; 650():119-157. PubMed ID: 33867019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamic and Spectroscopic Studies of the Complexes Formed in Tartaric Acid and Lanthanide(III) Ions Binary Systems.
    Zabiszak M; Nowak M; Hnatejko Z; Grajewski J; Ogawa K; Kaczmarek MT; Jastrzab R
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32138188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymetallic lanthanide complexes with PAMAM-naphthalimide dendritic ligands: luminescent lanthanide complexes formed in solution.
    Cross JP; Lauz M; Badger PD; Petoud S
    J Am Chem Soc; 2004 Dec; 126(50):16278-9. PubMed ID: 15600302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and characterization of dinuclear heterometallic lanthanide complexes exhibiting MRI and luminescence response.
    Mamedov I; Parac-Vogt TN; Logothetis NK; Angelovski G
    Dalton Trans; 2010 Jun; 39(24):5721-7. PubMed ID: 20485819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and characterization of the luminescent lanthanide complexes with two similar benzoic acids.
    Liu T; Duan G; Zhang Y; Fang J; Zeng Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Nov; 74(4):843-8. PubMed ID: 19758837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Density-functional theory structures of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complexes for ions across the lanthanide series.
    Smentek L; Andes Hess B; Cross JP; Charles Manning H; Bornhop DJ
    J Chem Phys; 2005 Dec; 123(24):244302. PubMed ID: 16396532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes.
    Ali M; Kumar A; Kumar M; Pandey BN
    Biochimie; 2016 Apr; 123():117-29. PubMed ID: 26821345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Near infrared and visible luminescence from xerogels covalently grafted with lanthanide [Sm(3+), Yb(3+), Nd(3+), Er(3+), Pr(3+), Ho(3+)] β-diketonate derivatives using visible light excitation.
    Sun L; Qiu Y; Liu T; Zhang JZ; Dang S; Feng J; Wang Z; Zhang H; Shi L
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9585-93. PubMed ID: 24063535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel strategy for the design of 8-hydroxyquinolinate-based lanthanide bioprobes that emit in the near infrared range.
    Comby S; Imbert D; Vandevyver C; Bünzli JC
    Chemistry; 2007; 13(3):936-44. PubMed ID: 17075929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visible-near-infrared luminescent lanthanide ternary complexes based on beta-diketonate using visible-light excitation.
    Sun L; Qiu Y; Liu T; Feng J; Deng W; Shi L
    Luminescence; 2015 Nov; 30(7):1071-6. PubMed ID: 25691149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lanthanide-based resonance energy transfer biosensors for live-cell applications.
    Pham H; Miller LW
    Methods Enzymol; 2021; 651():291-311. PubMed ID: 33888207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A rare earth-DOTA-binding antibody: probe properties and binding affinity across the lanthanide series.
    Corneillie TM; Whetstone PA; Fisher AJ; Meares CF
    J Am Chem Soc; 2003 Mar; 125(12):3436-7. PubMed ID: 12643698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly luminescent lanthanide complexes with novel bis-β-diketone ligand: synthesis, characterization and photoluminescent properties.
    Li HF; Li GM; Chen P; Sun WB; Yan PF
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():197-201. PubMed ID: 22763323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lanthanides compete with calcium for binding to cadherins and inhibit cadherin-mediated cell adhesion.
    Brayshaw LL; Smith RCG; Badaoui M; Irving JA; Price SR
    Metallomics; 2019 May; 11(5):914-924. PubMed ID: 30848261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.