These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A Small Molecule Antagonist of PD-1/PD-L1 Interactions Acts as an Immune Checkpoint Inhibitor for NSCLC and Melanoma Immunotherapy. Wang Y; Gu T; Tian X; Li W; Zhao R; Yang W; Gao Q; Li T; Shim JH; Zhang C; Liu K; Lee MH Front Immunol; 2021; 12():654463. PubMed ID: 34054817 [TBL] [Abstract][Full Text] [Related]
5. eEF2K promotes PD-L1 stabilization through inactivating GSK3β in melanoma. Chen X; Wang K; Jiang S; Sun H; Che X; Zhang M; He J; Wen Y; Liao M; Li X; Zhou X; Song J; Ren X; Yi W; Yang J; Chen X; Yin M; Cheng Y J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35347072 [TBL] [Abstract][Full Text] [Related]
6. The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma. Mahoney KM; Freeman GJ; McDermott DF Clin Ther; 2015 Apr; 37(4):764-82. PubMed ID: 25823918 [TBL] [Abstract][Full Text] [Related]
7. TCR Repertoire Diversity of Peripheral PD-1 Han J; Duan J; Bai H; Wang Y; Wan R; Wang X; Chen S; Tian Y; Wang D; Fei K; Yao Z; Wang S; Lu Z; Wang Z; Wang J Cancer Immunol Res; 2020 Jan; 8(1):146-154. PubMed ID: 31719056 [TBL] [Abstract][Full Text] [Related]
8. Programmed Cell Death-1: Programmed Cell Death-Ligand 1 Interaction Protects Human Cardiomyocytes Against T-Cell Mediated Inflammation and Apoptosis Response In Vitro. Tay WT; Fang YH; Beh ST; Liu YW; Hsu LW; Yen CJ; Liu PY Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244307 [TBL] [Abstract][Full Text] [Related]
9. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. Chung YM; Khan PP; Wang H; Tsai WB; Qiao Y; Yu B; Larrick JW; Hu MC J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34887262 [TBL] [Abstract][Full Text] [Related]
10. Dynamic Changes in PD-L1 Expression and Immune Infiltrates Early During Treatment Predict Response to PD-1 Blockade in Melanoma. Vilain RE; Menzies AM; Wilmott JS; Kakavand H; Madore J; Guminski A; Liniker E; Kong BY; Cooper AJ; Howle JR; Saw RPM; Jakrot V; Lo S; Thompson JF; Carlino MS; Kefford RF; Long GV; Scolyer RA Clin Cancer Res; 2017 Sep; 23(17):5024-5033. PubMed ID: 28512174 [No Abstract] [Full Text] [Related]
11. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: An exploratory multi-omic analysis. Snyder A; Nathanson T; Funt SA; Ahuja A; Buros Novik J; Hellmann MD; Chang E; Aksoy BA; Al-Ahmadie H; Yusko E; Vignali M; Benzeno S; Boyd M; Moran M; Iyer G; Robins HS; Mardis ER; Merghoub T; Hammerbacher J; Rosenberg JE; Bajorin DF PLoS Med; 2017 May; 14(5):e1002309. PubMed ID: 28552987 [TBL] [Abstract][Full Text] [Related]
12. Combinatorial immunotherapy of polyinosinic-polycytidylic acid and blockade of programmed death-ligand 1 induce effective CD8 T-cell responses against established tumors. Nagato T; Lee YR; Harabuchi Y; Celis E Clin Cancer Res; 2014 Mar; 20(5):1223-34. PubMed ID: 24389326 [TBL] [Abstract][Full Text] [Related]
13. Anti-PD-L1 prolongs survival and triggers T cell but not humoral anti-tumor immune responses in a human MUC1-expressing preclinical ovarian cancer model. Mony JT; Zhang L; Ma T; Grabosch S; Tirodkar TS; Brozick J; Tseng G; Elishaev E; Edwards RP; Huang X; Vlad AM Cancer Immunol Immunother; 2015 Sep; 64(9):1095-108. PubMed ID: 25998800 [TBL] [Abstract][Full Text] [Related]
14. Early changes in the circulating T cells are associated with clinical outcomes after PD-L1 blockade by durvalumab in advanced NSCLC patients. Naidus E; Bouquet J; Oh DY; Looney TJ; Yang H; Fong L; Standifer NE; Zhang L Cancer Immunol Immunother; 2021 Jul; 70(7):2095-2102. PubMed ID: 33420629 [TBL] [Abstract][Full Text] [Related]
15. Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics. Han X; Li H; Zhou D; Chen Z; Gu Z Acc Chem Res; 2020 Nov; 53(11):2521-2533. PubMed ID: 33073988 [TBL] [Abstract][Full Text] [Related]
16. 4-1BB Agonism Combined With PD-L1 Blockade Increases the Number of Tissue-Resident CD8+ T Cells and Facilitates Tumor Abrogation. Qu QX; Zhu XY; Du WW; Wang HB; Shen Y; Zhu YB; Chen C Front Immunol; 2020; 11():577. PubMed ID: 32391001 [TBL] [Abstract][Full Text] [Related]
17. B Cells Are Required to Generate Optimal Anti-Melanoma Immunity in Response to Checkpoint Blockade. Singh S; Roszik J; Saini N; Singh VK; Bavisi K; Wang Z; Vien LT; Yang Z; Kundu S; Davis RE; Bover L; Diab A; Neelapu SS; Overwijk WW; Rai K; Singh M Front Immunol; 2022; 13():794684. PubMed ID: 35720386 [TBL] [Abstract][Full Text] [Related]
18. A human programmed death-ligand 1-expressing mouse tumor model for evaluating the therapeutic efficacy of anti-human PD-L1 antibodies. Huang A; Peng D; Guo H; Ben Y; Zuo X; Wu F; Yang X; Teng F; Li Z; Qian X; Qin FX Sci Rep; 2017 Feb; 7():42687. PubMed ID: 28202921 [TBL] [Abstract][Full Text] [Related]
19. Dual activity of PD-L1 targeted Doxorubicin immunoliposomes promoted an enhanced efficacy of the antitumor immune response in melanoma murine model. Merino M; Lozano T; Casares N; Lana H; Troconiz IF; Ten Hagen TLM; Kochan G; Berraondo P; Zalba S; Garrido MJ J Nanobiotechnology; 2021 Apr; 19(1):102. PubMed ID: 33849551 [TBL] [Abstract][Full Text] [Related]
20. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Mariathasan S; Turley SJ; Nickles D; Castiglioni A; Yuen K; Wang Y; Kadel EE; Koeppen H; Astarita JL; Cubas R; Jhunjhunwala S; Banchereau R; Yang Y; Guan Y; Chalouni C; Ziai J; Şenbabaoğlu Y; Santoro S; Sheinson D; Hung J; Giltnane JM; Pierce AA; Mesh K; Lianoglou S; Riegler J; Carano RAD; Eriksson P; Höglund M; Somarriba L; Halligan DL; van der Heijden MS; Loriot Y; Rosenberg JE; Fong L; Mellman I; Chen DS; Green M; Derleth C; Fine GD; Hegde PS; Bourgon R; Powles T Nature; 2018 Feb; 554(7693):544-548. PubMed ID: 29443960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]