BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 33888714)

  • 1. J-aggregates of meso-[2.2]paracyclophanyl-BODIPY dye for NIR-II imaging.
    Li K; Duan X; Jiang Z; Ding D; Chen Y; Zhang GQ; Liu Z
    Nat Commun; 2021 Apr; 12(1):2376. PubMed ID: 33888714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-Withdrawing Substituents Allow Boosted NIR-II Fluorescence in J-Type Aggregates for Bioimaging and Information Encryption.
    Zhu Y; Wu P; Liu S; Yang J; Wu F; Cao W; Yang Y; Zheng B; Xiong H
    Angew Chem Int Ed Engl; 2023 Nov; 62(47):e202313166. PubMed ID: 37817512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel aza-BODIPY based small molecular NIR-II fluorophores for in vivo imaging.
    Bai L; Sun P; Liu Y; Zhang H; Hu W; Zhang W; Liu Z; Fan Q; Li L; Huang W
    Chem Commun (Camb); 2019 Sep; 55(73):10920-10923. PubMed ID: 31441463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular J-aggregates of aza-BODIPY by steric and π-π nteractions for NIR-II phototheranostics.
    Tian Y; Yin D; Cheng Q; Dang H; Teng C; Yan L
    J Mater Chem B; 2022 Mar; 10(10):1650-1662. PubMed ID: 35195126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Photoactivatable Far-Red/Near-Infrared BODIPY To Monitor Cellular Dynamics in Vivo.
    Sansalone L; Tang S; Garcia-Amorós J; Zhang Y; Nonell S; Baker JD; Captain B; Raymo FM
    ACS Sens; 2018 Jul; 3(7):1347-1353. PubMed ID: 29863337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computational and experimental investigation of donor-acceptor BODIPY based near-infrared fluorophore for in vivo imaging.
    Zhang R; He X; Jiang JM; Li PP; Wang HY; Li L; Yang JX; Kong L
    Bioorg Chem; 2021 May; 110():104789. PubMed ID: 33714760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-Infrared Laser-Triggered
    Chen Y; Zhang XH; Cheng DB; Zhang Y; Liu Y; Ji L; Guo R; Chen H; Ren XK; Chen Z; Qiao ZY; Wang H
    ACS Nano; 2020 Mar; 14(3):3640-3650. PubMed ID: 32119522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting Cysteine in Bioimaging with a Near-Infrared Probe Based on a Novel Fluorescence Quenching Mechanism.
    Tao Y; Ji X; Zhang J; Jin Y; Wang N; Si Y; Zhao W
    Chembiochem; 2020 Nov; 21(21):3131-3136. PubMed ID: 32558103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. J-Aggregation induced NIR-II fluorescence: an aza-BODIPY luminogen for efficient phototheranostics.
    Yang N; Song S; Akhtar MH; Liu C; Yao L; Yu J; Li Y; Li Q; He D; Yu C
    J Mater Chem B; 2023 Oct; 11(40):9712-9720. PubMed ID: 37791404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual Color Imaging from a Single BF
    Curtin N; Wu D; Cahill R; Sarkar A; Aonghusa PM; Zhuk S; Barberio M; Al-Taher M; Marescaux J; Diana M; O'Shea DF
    Int J Med Sci; 2021; 18(7):1541-1553. PubMed ID: 33746570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of two near-infrared coumarin-BODIPY dyes for bioimaging and photothermal therapy of cancer.
    Zhang Y; Song N; Li Y; Yang Z; Chen L; Sun T; Xie Z
    J Mater Chem B; 2019 Jul; 7(30):4717-4724. PubMed ID: 31364681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of hydrogen polysulfides in living cells and in vivo via a near-infrared fluorescent probe.
    Wang X; Sun Q; Zhao L; Gong S; Xu L
    J Biol Inorg Chem; 2019 Oct; 24(7):1077-1085. PubMed ID: 31515622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced in vivo Optical Imaging of the Inflammatory Response to Acute Liver Injury in C57BL/6 Mice Using a Highly Bright Near-Infrared BODIPY Dye.
    Sirbu D; Luli S; Leslie J; Oakley F; Benniston AC
    ChemMedChem; 2019 May; 14(10):995-999. PubMed ID: 30920173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic [b]-fused BODIPY dyes as promising near-infrared dyes.
    Wang J; Boens N; Jiao L; Hao E
    Org Biomol Chem; 2020 Jun; 18(22):4135-4156. PubMed ID: 32441725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BODIPY-based dye for no-wash live-cell staining and imaging.
    Pakhomov AA; Deyev IE; Ratnikova NM; Chumakov SP; Mironiuk VB; Kononevich YN; Muzafarov AM; Martynov VI
    Biotechniques; 2017 Aug; 63(2):77-80. PubMed ID: 28803543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activatable Near-Infrared Fluorescence Imaging Using PEGylated Bacteriochlorin-Based Chlorin and BODIPY-Dyads as Probes for Detecting Cancer.
    Ogata F; Nagaya T; Maruoka Y; Akhigbe J; Meares A; Lucero MY; Satraitis A; Fujimura D; Okada R; Inagaki F; Choyke PL; Ptaszek M; Kobayashi H
    Bioconjug Chem; 2019 Jan; 30(1):169-183. PubMed ID: 30475591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electron-deficiency-based framework for NIR-II fluorescence probes.
    Gao J; Wang R; Zhu T; Tan J; Gu X; Zhao C
    J Mater Chem B; 2020 Nov; 8(43):9877-9880. PubMed ID: 33108428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Galactose conjugated boron dipyrromethene and hydrogen bonding promoted J-aggregates for efficiently targeted NIR-II fluorescence assistant photothermal therapy.
    Dang H; Tian Y; Cheng Q; Teng C; Xie K; Yan L
    J Colloid Interface Sci; 2022 Apr; 612():287-297. PubMed ID: 34995865
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Kim H; Kim K; Son SH; Choi JY; Lee KH; Kim BT; Byun Y; Choe YS
    ACS Chem Neurosci; 2019 Mar; 10(3):1445-1451. PubMed ID: 30592412
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Kwon YD; Byun Y; Kim HK
    Nucl Med Biol; 2021 Feb; 93():22-36. PubMed ID: 33276283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.