BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33889081)

  • 1. A Semi-active Exoskeleton Based on EMGs Reduces Muscle Fatigue When Squatting.
    Wang Z; Wu X; Zhang Y; Chen C; Liu S; Liu Y; Peng A; Ma Y
    Front Neurorobot; 2021; 15():625479. PubMed ID: 33889081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does the relative muscle activation of the vastus medialis, rectus femoris, and vastus lateralis, during the various activities, change in relation to the quadriceps angle?
    Lee N
    J Phys Ther Sci; 2018 Apr; 30(4):540-543. PubMed ID: 29706702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using a Back Exoskeleton During Industrial and Functional Tasks-Effects on Muscle Activity, Posture, Performance, Usability, and Wearer Discomfort in a Laboratory Trial.
    Luger T; Bär M; Seibt R; Rieger MA; Steinhilber B
    Hum Factors; 2023 Feb; 65(1):5-21. PubMed ID: 33861139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle activity in wedge, parallel, and giant slalom skiing.
    Hintermeister RA; O'Connor DD; Lange GW; Dillman CJ; Steadman JR
    Med Sci Sports Exerc; 1997 Apr; 29(4):548-53. PubMed ID: 9107639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a Passive Back Exoskeleton During a Simulated Sorting Task: Influence on Muscle Activity, Posture, and Heart Rate.
    Bär M; Luger T; Seibt R; Rieger MA; Steinhilber B
    Hum Factors; 2024 Jan; 66(1):40-55. PubMed ID: 35225011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a Lower Leg Support Exoskeleton on Floor and Below Hip Height Panel Work.
    Pillai MV; Van Engelhoven L; Kazerooni H
    Hum Factors; 2020 May; 62(3):489-500. PubMed ID: 32150477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort.
    Luger T; Seibt R; Cobb TJ; Rieger MA; Steinhilber B
    Appl Ergon; 2019 Oct; 80():152-160. PubMed ID: 31280799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review.
    Kermavnar T; de Vries AW; de Looze MP; O'Sullivan LW
    Ergonomics; 2021 Jun; 64(6):685-711. PubMed ID: 33369518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromyographic activity in the gluteus medius, gluteus maximus, biceps femoris, vastus lateralis, vastus medialis and rectus femoris during the Monopodal Squat, Forward Lunge and Lateral Step-Up exercises.
    Muyor JM; Martín-Fuentes I; Rodríguez-Ridao D; Antequera-Vique JA
    PLoS One; 2020; 15(4):e0230841. PubMed ID: 32236133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of whole-body vibration training in static and dynamic semi-squat patterns on the lower limb muscle activity.
    Liu Y; Fan Y; Chen X
    Sci Rep; 2023 Sep; 13(1):14432. PubMed ID: 37660154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking.
    Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing Squat Physical Effort Using Personalized Assistance From an Ankle Exoskeleton.
    Kantharaju P; Jeong H; Ramadurai S; Jacobson M; Jeong H; Kim M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1786-1795. PubMed ID: 35759579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast voluntary trunk flexion movements in standing: motor patterns.
    Oddsson L; Thorstensson A
    Acta Physiol Scand; 1987 Jan; 129(1):93-106. PubMed ID: 3565047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Experimental Evaluation of a Lower-Limb Exoskeleton for Assisting Workers With Motorized Tuning of Squat Heights.
    Tu Y; Zhu A; Song J; Zhang X; Cao G
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():184-193. PubMed ID: 35030082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Unpowered Knee Exoskeleton for Walking Assistance and Energy Capture.
    Tang X; Wang X; Xue Y; Wei P
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle Synergy Alteration of Human During Walking With Lower Limb Exoskeleton.
    Li Z; Liu H; Yin Z; Chen K
    Front Neurosci; 2018; 12():1050. PubMed ID: 30760972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association between walking ability and trunk and lower-limb muscle atrophy in institutionalized elderly women: a longitudinal pilot study.
    Ikezoe T; Nakamura M; Shima H; Asakawa Y; Ichihashi N
    J Physiol Anthropol; 2015 Aug; 34(1):31. PubMed ID: 26311527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Time Division Multiplexing Inspired Lightweight Soft Exoskeleton for Hip and Ankle Joint Assistance.
    Ye X; Chen C; Shi Y; Chen L; Wang Z; Zhang Z; Liu Y; Wu X
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Study on the Differences of Quadriceps Femoris Activities by Knee Alignment during Isometric Contraction.
    Park S; Ko YM; Jang GU; Hwang YT; Park JW
    J Phys Ther Sci; 2014 Nov; 26(11):1685-8. PubMed ID: 25435677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the distribution of muscle activity when using a passive trunk exoskeleton depend on the type of working task: A high-density surface EMG study.
    Dos Anjos FV; Ghislieri M; Cerone GL; Pinto TP; Gazzoni M
    J Biomech; 2022 Jan; 130():110846. PubMed ID: 34749163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.