These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 33889166)

  • 1. Integrative Modeling of Gene Expression and Metabolic Networks of
    Cloutier M; Xiang D; Gao P; Kochian LV; Zou J; Datla R; Wang E
    Front Plant Sci; 2021; 12():642938. PubMed ID: 33889166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Association Study of Arabidopsis thaliana Identifies Determinants of Natural Variation in Seed Oil Composition.
    Branham SE; Wright SJ; Reba A; Linder CR
    J Hered; 2016 May; 107(3):248-56. PubMed ID: 26704140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production.
    Lee KR; Chen GQ; Kim HU
    Plant Cell Rep; 2015 Apr; 34(4):603-15. PubMed ID: 25577331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional genetic networks among seed oil-related traits, metabolites and genes reveal the genetic foundations of oil synthesis in soybean.
    Liu JY; Li P; Zhang YW; Zuo JF; Li G; Han X; Dunwell JM; Zhang YM
    Plant J; 2020 Aug; 103(3):1103-1124. PubMed ID: 32344462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos.
    Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X
    Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.
    Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB
    Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in
    Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata).
    Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y
    BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Down-regulation of crambe fatty acid desaturase and elongase in Arabidopsis and crambe resulted in significantly increased oleic acid content in seed oil.
    Li X; Mei D; Liu Q; Fan J; Singh S; Green A; Zhou XR; Zhu LH
    Plant Biotechnol J; 2016 Jan; 14(1):323-31. PubMed ID: 25998013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oil and protein accumulation in developing seeds is influenced by the expression of a cytosolic pyrophosphatase in Arabidopsis.
    Meyer K; Stecca KL; Ewell-Hicks K; Allen SM; Everard JD
    Plant Physiol; 2012 Jul; 159(3):1221-34. PubMed ID: 22566496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of hydroxy fatty acid and triacylglycerol metabolism-related genes in lesquerella through seed transcriptome analysis.
    Kim HU; Chen GQ
    BMC Genomics; 2015 Mar; 16(1):230. PubMed ID: 25881190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Transcriptome Changes Related to Oil Accumulation in Developing Soybean Seeds.
    Yang S; Miao L; He J; Zhang K; Li Y; Gai J
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31060266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between phenylpropane metabolism and oil accumulation in the developing seed of Brassica napus revealed by high temporal-resolution transcriptomes.
    Yu L; Liu D; Yin F; Yu P; Lu S; Zhang Y; Zhao H; Lu C; Yao X; Dai C; Yang QY; Guo L
    BMC Biol; 2023 Sep; 21(1):202. PubMed ID: 37775748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytosolic phosphorylating glyceraldehyde-3-phosphate dehydrogenases affect Arabidopsis cellular metabolism and promote seed oil accumulation.
    Guo L; Ma F; Wei F; Fanella B; Allen DK; Wang X
    Plant Cell; 2014 Jul; 26(7):3023-35. PubMed ID: 24989043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural variation of GmFATA1B regulates seed oil content and composition in soybean.
    Cai Z; Xian P; Cheng Y; Yang Y; Zhang Y; He Z; Xiong C; Guo Z; Chen Z; Jiang H; Ma Q; Nian H; Ge L
    J Integr Plant Biol; 2023 Oct; 65(10):2368-2379. PubMed ID: 37655952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation.
    Li Y; Beisson F; Pollard M; Ohlrogge J
    Phytochemistry; 2006 May; 67(9):904-15. PubMed ID: 16600316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis.
    van Erp H; Kelly AA; Menard G; Eastmond PJ
    Plant Physiol; 2014 May; 165(1):30-6. PubMed ID: 24696520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antagonistic MADS-box transcription factors SEEDSTICK and SEPALLATA3 form a transcriptional regulatory network that regulates seed oil accumulation.
    He S; Min Y; Liu Z; Zhi F; Ma R; Ge A; Wang S; Zhao Y; Peng D; Zhang D; Jin M; Song B; Wang J; Guo Y; Chen M
    J Integr Plant Biol; 2024 Jan; 66(1):121-142. PubMed ID: 38146678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical metabolic pathways and genes cooperate for epoxy fatty acid-enriched oil production in developing seeds of Vernonia galamensis, an industrial oleaginous plant.
    Sun Y; Liu B; Xue J; Wang X; Cui H; Li R; Jia X
    Biotechnol Biofuels Bioprod; 2022 Feb; 15(1):21. PubMed ID: 35216635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of superior Pistacia chinensis accession with high-quality seed oil and biodiesel production and revelation of LEC1/WRI1-mediated high oil accumulative mechanism for better developing woody biodiesel.
    Chen F; Lin W; Li W; Hu J; Li Z; Shi L; Zhang Z; Xiu Y; Lin S
    BMC Plant Biol; 2023 May; 23(1):268. PubMed ID: 37208597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.