These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 33889436)
1. Design of Cobalt Fischer-Tropsch Catalysts for the Combined Production of Liquid Fuels and Olefin Chemicals from Hydrogen-Rich Syngas. Jeske K; Kizilkaya AC; López-Luque I; Pfänder N; Bartsch M; Concepción P; Prieto G ACS Catal; 2021 Apr; 11(8):4784-4798. PubMed ID: 33889436 [TBL] [Abstract][Full Text] [Related]
2. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO Zhou W; Cheng K; Kang J; Zhou C; Subramanian V; Zhang Q; Wang Y Chem Soc Rev; 2019 Jun; 48(12):3193-3228. PubMed ID: 31106785 [TBL] [Abstract][Full Text] [Related]
3. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry. Haibach MC; Kundu S; Brookhart M; Goldman AS Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036 [TBL] [Abstract][Full Text] [Related]
4. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity. Lin T; Yu F; An Y; Qin T; Li L; Gong K; Zhong L; Sun Y Acc Chem Res; 2021 Apr; 54(8):1961-1971. PubMed ID: 33599477 [TBL] [Abstract][Full Text] [Related]
5. Selectivity Control by Relay Catalysis in CO and CO Cheng K; Li Y; Kang J; Zhang Q; Wang Y Acc Chem Res; 2024 Mar; 57(5):714-725. PubMed ID: 38349801 [TBL] [Abstract][Full Text] [Related]
6. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Zhong L; Yu F; An Y; Zhao Y; Sun Y; Li Z; Lin T; Lin Y; Qi X; Dai Y; Gu L; Hu J; Jin S; Shen Q; Wang H Nature; 2016 Oct; 538(7623):84-87. PubMed ID: 27708303 [TBL] [Abstract][Full Text] [Related]
7. Linear α-olefin production with Na-promoted Fe-Zn catalysts Yang S; Lee S; Kang SC; Han SJ; Jun KW; Lee KY; Kim YT RSC Adv; 2019 May; 9(25):14176-14187. PubMed ID: 35519344 [TBL] [Abstract][Full Text] [Related]
8. Efficient conversion of syngas to linear α-olefins by phase-pure χ-Fe Wang P; Chiang FK; Chai J; Dugulan AI; Dong J; Chen W; Broos RJP; Feng B; Song Y; Lv Y; Lin Q; Wang R; Filot IAW; Men Z; Hensen EJM Nature; 2024 Nov; 635(8037):102-107. PubMed ID: 39415021 [TBL] [Abstract][Full Text] [Related]
9. Selective Conversion of Syngas to Olefins via Novel Cu-Promoted Fe/RGO and Fe-Mn/RGO Fischer-Tropsch Catalysts: Fixed-Bed Reactor vs Slurry-Bed Reactor. Nasser AH; El-Bery HM; ELnaggar H; Basha IK; El-Moneim AA ACS Omega; 2021 Nov; 6(46):31099-31111. PubMed ID: 34841152 [TBL] [Abstract][Full Text] [Related]
10. Green Process Design for Reductive Hydroformylation of Renewable Olefin Cuts for Drop-In Diesel Fuels. Püschel S; Störtte S; Topphoff J; Vorholt AJ; Leitner W ChemSusChem; 2021 Dec; 14(23):5226-5234. PubMed ID: 34145781 [TBL] [Abstract][Full Text] [Related]
11. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: a review. Abelló S; Montané D ChemSusChem; 2011 Nov; 4(11):1538-56. PubMed ID: 22083868 [TBL] [Abstract][Full Text] [Related]
12. Effects of Rare Earth Metal Promotion over Zeolite-Supported Fe-Cu-Based Catalysts on the Light Olefin Production Performance in Fischer-Tropsch Synthesis. Burgun U; Zonouz HR; Okutan H; Atakül H; Senkan S; Sarioglan A; Gumuslu Gur G ACS Omega; 2023 Jan; 8(1):648-662. PubMed ID: 36643472 [TBL] [Abstract][Full Text] [Related]
13. Recent advances in Co Yu F; Lin T; An Y; Gong K; Wang X; Sun Y; Zhong L Chem Commun (Camb); 2022 Aug; 58(70):9712-9727. PubMed ID: 35972448 [TBL] [Abstract][Full Text] [Related]
14. Direct Conversion of Syngas to Light Olefins through Fischer-Tropsch Synthesis over Fe-Zr Catalysts Modified with Sodium. Ma Z; Ma H; Zhang H; Wu X; Qian W; Sun Q; Ying W ACS Omega; 2021 Feb; 6(7):4968-4976. PubMed ID: 33644604 [TBL] [Abstract][Full Text] [Related]
15. Mn-Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor. Nasser AH; Guo L; ELnaggar H; Wang Y; Guo X; AbdelMoneim A; Tsubaki N RSC Adv; 2018 Apr; 8(27):14854-14863. PubMed ID: 35541361 [TBL] [Abstract][Full Text] [Related]
16. Sodium-Containing Spinel Zinc Ferrite as a Catalyst Precursor for the Selective Synthesis of Liquid Hydrocarbon Fuels. Choi YH; Ra EC; Kim EH; Kim KY; Jang YJ; Kang KN; Choi SH; Jang JH; Lee JS ChemSusChem; 2017 Dec; 10(23):4764-4770. PubMed ID: 29068558 [TBL] [Abstract][Full Text] [Related]
17. Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins. Li Z; Liu J; Zhao Y; Waterhouse GIN; Chen G; Shi R; Zhang X; Liu X; Wei Y; Wen XD; Wu LZ; Tung CH; Zhang T Adv Mater; 2018 Aug; 30(31):e1800527. PubMed ID: 29873126 [TBL] [Abstract][Full Text] [Related]
18. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity. Zhang Q; Cheng K; Kang J; Deng W; Wang Y ChemSusChem; 2014 May; 7(5):1251-64. PubMed ID: 24339240 [TBL] [Abstract][Full Text] [Related]
19. Controlled Nanostructure of Zeolite Crystal Encapsulating FeMnK Catalysts Targeting Light Olefins from Syngas. Zhu C; Zhang M; Huang C; Han Y; Fang K ACS Appl Mater Interfaces; 2020 Dec; 12(52):57950-57962. PubMed ID: 33337154 [TBL] [Abstract][Full Text] [Related]
20. Oxide-Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond Fischer-Tropsch Synthesis. Pan X; Jiao F; Miao D; Bao X Chem Rev; 2021 Jun; 121(11):6588-6609. PubMed ID: 34032417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]