These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 33889601)
1. Long Non-coding RNA: A Key Regulator in the Pathogenesis of Diabetic Cardiomyopathy. Guo Y; Feng X; Wang D; Kang X; Zhang L; Ren H; Yuan G Front Cardiovasc Med; 2021; 8():655598. PubMed ID: 33889601 [TBL] [Abstract][Full Text] [Related]
2. Non-coding RNA involvement in the pathogenesis of diabetic cardiomyopathy. Zhang W; Xu W; Feng Y; Zhou X J Cell Mol Med; 2019 Sep; 23(9):5859-5867. PubMed ID: 31240820 [TBL] [Abstract][Full Text] [Related]
3. Unveiling the Vital Role of Long Non-Coding RNAs in Cardiac Oxidative Stress, Cell Death, and Fibrosis in Diabetic Cardiomyopathy. Tian Y; Gao Z; Liu W; Li J; Jiang X; Xin Y Antioxidants (Basel); 2022 Dec; 11(12):. PubMed ID: 36552599 [TBL] [Abstract][Full Text] [Related]
4. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy. Pant T; Dhanasekaran A; Fang J; Bai X; Bosnjak ZJ; Liang M; Ge ZD BMC Cardiovasc Disord; 2018 Oct; 18(1):197. PubMed ID: 30342478 [TBL] [Abstract][Full Text] [Related]
5. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Jakubik D; Fitas A; Eyileten C; Jarosz-Popek J; Nowak A; Czajka P; Wicik Z; Sourij H; Siller-Matula JM; De Rosa S; Postula M Cardiovasc Diabetol; 2021 Feb; 20(1):55. PubMed ID: 33639953 [TBL] [Abstract][Full Text] [Related]
6. Role of Non-coding RNA in Diabetic Cardiomyopathy. Xia L; Song M Adv Exp Med Biol; 2020; 1229():181-195. PubMed ID: 32285412 [TBL] [Abstract][Full Text] [Related]
7. Roles of non-coding RNA in diabetic cardiomyopathy. Yao X; Huang X; Chen J; Lin W; Tian J Cardiovasc Diabetol; 2024 Jun; 23(1):227. PubMed ID: 38951895 [TBL] [Abstract][Full Text] [Related]
8. Biological Functions and Clinical Prospects of Extracellular Non-Coding RNAs in Diabetic Cardiomyopathy: an Updated Review. Yin Z; Chen C J Cardiovasc Transl Res; 2022 Jun; 15(3):469-476. PubMed ID: 35175553 [TBL] [Abstract][Full Text] [Related]
9. MicroRNAs: A Critical Regulator and a Promising Therapeutic and Diagnostic Molecule for Diabetic Cardiomyopathy. Mathur P; Rani V Curr Gene Ther; 2021; 21(4):313-326. PubMed ID: 33719971 [TBL] [Abstract][Full Text] [Related]
10. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Yue Y; Meng K; Pu Y; Zhang X Diabetes Res Clin Pract; 2017 Nov; 133():124-130. PubMed ID: 28934669 [TBL] [Abstract][Full Text] [Related]
11. Atorvastatin ameliorated myocardial fibrosis by inhibiting oxidative stress and modulating macrophage polarization in diabetic cardiomyopathy. Lei XT; Pu DL; Shan G; Wu QN World J Diabetes; 2024 Jun; 15(6):1070-1073. PubMed ID: 38983803 [TBL] [Abstract][Full Text] [Related]
12. Long noncoding RNAs: A new player in the prevention and treatment of diabetic cardiomyopathy? Ma C; Luo H; Liu B; Li F; Tschöpe C; Fa X Diabetes Metab Res Rev; 2018 Nov; 34(8):e3056. PubMed ID: 30160026 [TBL] [Abstract][Full Text] [Related]
13. Role of microRNAs in the pathogenesis of diabetic cardiomyopathy. Liu X; Liu S Biomed Rep; 2017 Feb; 6(2):140-145. PubMed ID: 28357065 [TBL] [Abstract][Full Text] [Related]
14. Long noncoding RNA Crnde attenuates cardiac fibrosis via Smad3-Crnde negative feedback in diabetic cardiomyopathy. Zheng D; Zhang Y; Hu Y; Guan J; Xu L; Xiao W; Zhong Q; Ren C; Lu J; Liang J; Hou J FEBS J; 2019 May; 286(9):1645-1655. PubMed ID: 30748104 [TBL] [Abstract][Full Text] [Related]
15. Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Parim B; Sathibabu Uddandrao VV; Saravanan G Heart Fail Rev; 2019 Mar; 24(2):279-299. PubMed ID: 30349977 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of long non-coding RNA TUG1 protects against diabetic cardiomyopathy induced diastolic dysfunction by regulating miR-499-5p. Zhao L; Li W; Zhao H Am J Transl Res; 2020; 12(3):718-730. PubMed ID: 32269707 [TBL] [Abstract][Full Text] [Related]
17. CircRNAs in diabetic cardiomyopathy. Wan H; Zhao S; Zeng Q; Tan Y; Zhang C; Liu L; Qu S Clin Chim Acta; 2021 Jun; 517():127-132. PubMed ID: 33711326 [TBL] [Abstract][Full Text] [Related]
18. The study of the mechanism of non-coding RNA regulation of programmed cell death in diabetic cardiomyopathy. Zhang B; Wu H; Zhang J; Cong C; Zhang L Mol Cell Biochem; 2024 Jul; 479(7):1673-1696. PubMed ID: 38189880 [TBL] [Abstract][Full Text] [Related]
19. Chinese herbal medicine and active ingredients for diabetic cardiomyopathy: molecular mechanisms regulating endoplasmic reticulum stress. Ao L; Chen Z; Yin J; Leng Y; Luo Y; Fu X; Liu H; Liu X; Gao H; Xie C Front Pharmacol; 2023; 14():1290023. PubMed ID: 38027018 [No Abstract] [Full Text] [Related]
20. LncRNA Airn alleviates diabetic cardiac fibrosis by inhibiting activation of cardiac fibroblasts via a m6A-IMP2-p53 axis. Peng T; Liu M; Hu L; Guo D; Wang D; Qi B; Ren G; Hu C; Zhang F; Chun HJ; Song L; Hu J; Li Y Biol Direct; 2022 Nov; 17(1):32. PubMed ID: 36384975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]