These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 33889601)
41. Isoliquiritigenin attenuates diabetic cardiomyopathy via inhibition of hyperglycemia-induced inflammatory response and oxidative stress. Gu X; Shi Y; Chen X; Sun Z; Luo W; Hu X; Jin G; You S; Qian Y; Wu W; Liang G; Wu G; Chen Z; Chen X Phytomedicine; 2020 Nov; 78():153319. PubMed ID: 32950951 [TBL] [Abstract][Full Text] [Related]
42. (Pro)renin Receptor RNA Interference Silencing Attenuates Diabetic Cardiomyopathy Pathological Process in Rats. Yu S; Yuan H; Yang M; Cao X; Chen J; Zhou X; Dong B Hum Gene Ther; 2019 Jun; 30(6):727-739. PubMed ID: 30632404 [TBL] [Abstract][Full Text] [Related]
43. Epigallocatechin-3-gallate attenuates myocardial fibrosis in diabetic rats by activating autophagy. Jia Q; Yang R; Mehmood S; Li Y Exp Biol Med (Maywood); 2022 Sep; 247(17):1591-1600. PubMed ID: 35833541 [TBL] [Abstract][Full Text] [Related]
44. Upregulation of PKR pathway mediates glucolipotoxicity induced diabetic cardiomyopathy in vivo in wistar rats and in vitro in cultured cardiomyocytes. Mangali S; Bhat A; Jadhav K; Kalra J; Sriram D; Vamsi Krishna Venuganti V; Dhar A Biochem Pharmacol; 2020 Jul; 177():113948. PubMed ID: 32251680 [TBL] [Abstract][Full Text] [Related]
45. The role of microRNAs in the pathophysiology, diagnosis, and treatment of diabetic cardiomyopathy. Abdel Rhman M; Owira P J Pharm Pharmacol; 2022 Nov; 74(12):1663-1676. PubMed ID: 36130185 [TBL] [Abstract][Full Text] [Related]
46. Targeting non-coding RNAs in sEVs: The biological functions and potential therapeutic strategy of diabetic cardiomyopathy. Ding N; Yin Z; Chen C Biomed Pharmacother; 2023 Jul; 163():114836. PubMed ID: 37156118 [TBL] [Abstract][Full Text] [Related]
47. MiR-20a-5p overexpression prevented diabetic cardiomyopathy via inhibition of cardiomyocyte apoptosis, hypertrophy, fibrosis and JNK/NF-κB signalling pathway. Liu X; Guo B; Zhang W; Ma B; Li Y J Biochem; 2021 Oct; 170(3):349-362. PubMed ID: 33837411 [TBL] [Abstract][Full Text] [Related]
48. RNA Sequencing of Cardiac in a Rat Model Uncovers Potential Target LncRNA of Diabetic Cardiomyopathy. Xi Y; Chen D; Dong Z; Lam H; He J; Du K; Chen C; Guo J; Xiao J Front Genet; 2022; 13():848364. PubMed ID: 35495145 [No Abstract] [Full Text] [Related]
49. Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Yang F; Qin Y; Lv J; Wang Y; Che H; Chen X; Jiang Y; Li A; Sun X; Yue E; Ren L; Li Y; Bai Y; Wang L Cell Death Dis; 2018 Sep; 9(10):1000. PubMed ID: 30250027 [TBL] [Abstract][Full Text] [Related]
50. FNDC5/Irisin attenuates diabetic cardiomyopathy in a type 2 diabetes mouse model by activation of integrin αV/β5-AKT signaling and reduction of oxidative/nitrosative stress. Lin C; Guo Y; Xia Y; Li C; Xu X; Qi T; Zhang F; Fan M; Hu G; Zhao H; Zhao H; Liu R; Gao E; Yan W; Tao L J Mol Cell Cardiol; 2021 Nov; 160():27-41. PubMed ID: 34224725 [TBL] [Abstract][Full Text] [Related]
51. Inhibition of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 attenuates high glucose-induced cardiomyocyte apoptosis via regulation of miR-181a-5p. Cheng Y; Li J; Wang C; Yang H; Wang Y; Zhan T; Guo S; Liang J; Bai Y; Yu J; Liu G Exp Anim; 2020 Jan; 69(1):34-44. PubMed ID: 31353329 [TBL] [Abstract][Full Text] [Related]
52. PDCD4 deficiency ameliorates left ventricular remodeling and insulin resistance in a rat model of type 2 diabetic cardiomyopathy. Zhang J; Zhang M; Yang Z; Huang S; Wu X; Cao L; Wang X; Li Q; Li N; Gao F BMJ Open Diabetes Res Care; 2020 Apr; 8(1):. PubMed ID: 32371529 [TBL] [Abstract][Full Text] [Related]
53. Endothelial Dysfunction and Diabetic Cardiomyopathy. Wang M; Li Y; Li S; Lv J Front Endocrinol (Lausanne); 2022; 13():851941. PubMed ID: 35464057 [TBL] [Abstract][Full Text] [Related]
54. An Aza resveratrol-chalcone derivative 6b protects mice against diabetic cardiomyopathy by alleviating inflammation and oxidative stress. You S; Qian J; Sun C; Zhang H; Ye S; Chen T; Xu Z; Wang J; Huang W; Liang G J Cell Mol Med; 2018 Mar; 22(3):1931-1943. PubMed ID: 29327811 [TBL] [Abstract][Full Text] [Related]
55. Effects of non-coding RNAs and RNA-binding proteins on mitochondrial dysfunction in diabetic cardiomyopathy. Potel KN; Cornelius VA; Yacoub A; Chokr A; Donaghy CL; Kelaini S; Eleftheriadou M; Margariti A Front Cardiovasc Med; 2023; 10():1165302. PubMed ID: 37719978 [TBL] [Abstract][Full Text] [Related]
56. Diabetic Cardiomyopathy as a Clinical Entity: Is It a Myth? Zaveri MP; Perry JC; Schuetz TM; Memon MD; Faiz S; Cancarevic I Cureus; 2020 Oct; 12(10):e11100. PubMed ID: 33240696 [TBL] [Abstract][Full Text] [Related]
57. Perspectives for Forkhead box transcription factors in diabetic cardiomyopathy: Their therapeutic potential and possible effects of salvianolic acids. Han R; Huang H; Xia W; Liu J; Luo H; Tang J; Xia Z Front Cardiovasc Med; 2022; 9():951597. PubMed ID: 36035917 [TBL] [Abstract][Full Text] [Related]
58. Understanding diabetes-induced cardiomyopathy from the perspective of renin angiotensin aldosterone system. Sukumaran V; Gurusamy N; Yalcin HC; Venkatesh S Pflugers Arch; 2022 Jan; 474(1):63-81. PubMed ID: 34967935 [TBL] [Abstract][Full Text] [Related]
59. [Investigation on the differentially expressed circular RNAs in myocardium of mice with diabetic cardiomyopathy]. Wu XG; Zhang SC; Zhou X Zhonghua Xin Xue Guan Bing Za Zhi; 2022 May; 50(5):501-508. PubMed ID: 35589600 [No Abstract] [Full Text] [Related]
60. Diabetic cardiomyopathy: Early diagnostic biomarkers, pathogenetic mechanisms, and therapeutic interventions. Huo JL; Feng Q; Pan S; Fu WJ; Liu Z; Liu Z Cell Death Discov; 2023 Jul; 9(1):256. PubMed ID: 37479697 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]