These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 33889825)

  • 1. Current and future lithium-ion battery manufacturing.
    Liu Y; Zhang R; Wang J; Wang Y
    iScience; 2021 Apr; 24(4):102332. PubMed ID: 33889825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-Based Electrode Manufacturing and Direct Recycling of Lithium-Ion Battery Electrodes-A Green and Sustainable Manufacturing System.
    Li J; Lu Y; Yang T; Ge D; Wood DL; Li Z
    iScience; 2020 May; 23(5):101081. PubMed ID: 32380421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy flow analysis of laboratory scale lithium-ion battery cell production.
    Erakca M; Baumann M; Bauer W; de Biasi L; Hofmann J; Bold B; Weil M
    iScience; 2021 May; 24(5):102437. PubMed ID: 33997708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution.
    Wang S; Yu J
    Waste Manag Res; 2021 Jan; 39(1):156-164. PubMed ID: 33100173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential impact of the end-of-life batteries recycling of electric vehicles on lithium demand in China: 2010-2050.
    Qiao D; Wang G; Gao T; Wen B; Dai T
    Sci Total Environ; 2021 Apr; 764():142835. PubMed ID: 33097265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symmetric Electrodes for Electrochemical Energy-Storage Devices.
    Zhang L; Dou SX; Liu HK; Huang Y; Hu X
    Adv Sci (Weinh); 2016 Dec; 3(12):1600115. PubMed ID: 27981003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 30 Years of Lithium-Ion Batteries.
    Li M; Lu J; Chen Z; Amine K
    Adv Mater; 2018 Jun; ():e1800561. PubMed ID: 29904941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spent lithium ion battery (LIB) recycle from electric vehicles: A mini-review.
    Wei Q; Wu Y; Li S; Chen R; Ding J; Zhang C
    Sci Total Environ; 2023 Mar; 866():161380. PubMed ID: 36610625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen-Based Anion Redox for Lithium Batteries.
    Li M; Bi X; Amine K; Lu J
    Acc Chem Res; 2020 Aug; 53(8):1436-1444. PubMed ID: 32634307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling Intelligent Recovery of Critical Materials from Li-Ion Battery through Direct Recycling Process with Internet-of-Things.
    Lu Y; Han X; Li Z
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries.
    Long W; Fang B; Ignaszak A; Wu Z; Wang YJ; Wilkinson D
    Chem Soc Rev; 2017 Nov; 46(23):7176-7190. PubMed ID: 29075713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing.
    Li J; Fleetwood J; Hawley WB; Kays W
    Chem Rev; 2022 Jan; 122(1):903-956. PubMed ID: 34705441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal-Responsive and Fire-Resistant Materials for High-Safety Lithium-Ion Batteries.
    Li H; Wang H; Xu Z; Wang K; Ge M; Gan L; Zhang Y; Tang Y; Chen S
    Small; 2021 Oct; 17(43):e2103679. PubMed ID: 34580989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Materials for lithium-ion battery safety.
    Liu K; Liu Y; Lin D; Pei A; Cui Y
    Sci Adv; 2018 Jun; 4(6):eaas9820. PubMed ID: 29942858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superior "green" electrode materials for secondary batteries: through the footprint family indicators to analyze their environmental friendliness.
    Wu H; Gong Y; Yu Y; Huang K; Wang L
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36538-36557. PubMed ID: 31732947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization.
    Tian Y; Zeng G; Rutt A; Shi T; Kim H; Wang J; Koettgen J; Sun Y; Ouyang B; Chen T; Lun Z; Rong Z; Persson K; Ceder G
    Chem Rev; 2021 Feb; 121(3):1623-1669. PubMed ID: 33356176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges to Future Development of Spent Lithium Ion Batteries Recovery from Environmental and Technological Perspectives.
    Xiao J; Li J; Xu Z
    Environ Sci Technol; 2020 Jan; 54(1):9-25. PubMed ID: 31849217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical review of the circular economy for lithium-ion batteries and photovoltaic modules - status, challenges, and opportunities.
    Heath GA; Ravikumar D; Hansen B; Kupets E
    J Air Waste Manag Assoc; 2022 Jun; 72(6):478-539. PubMed ID: 35687330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling.
    Ojanen S; Lundström M; Santasalo-Aarnio A; Serna-Guerrero R
    Waste Manag; 2018 Jun; 76():242-249. PubMed ID: 29615279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning: An Advanced Platform for Materials Development and State Prediction in Lithium-Ion Batteries.
    Lv C; Zhou X; Zhong L; Yan C; Srinivasan M; Seh ZW; Liu C; Pan H; Li S; Wen Y; Yan Q
    Adv Mater; 2022 Jun; 34(25):e2101474. PubMed ID: 34490683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.