BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 33890138)

  • 1. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives.
    Haider S; Iqbal J; Naseer S; Yaseen T; Shaukat M; Bibi H; Ahmad Y; Daud H; Abbasi NL; Mahmood T
    Plant Cell Rep; 2021 Dec; 40(12):2247-2271. PubMed ID: 33890138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unfolding molecular switches in plant heat stress resistance: A comprehensive review.
    Haider S; Iqbal J; Naseer S; Shaukat M; Abbasi BA; Yaseen T; Zahra SA; Mahmood T
    Plant Cell Rep; 2022 Mar; 41(3):775-798. PubMed ID: 34401950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of elevated CO
    Ahammed GJ; Guang Y; Yang Y; Chen J
    Plant Cell Rep; 2021 Dec; 40(12):2273-2286. PubMed ID: 34269828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress in Research on the Mechanisms Underlying Chloroplast-Involved Heat Tolerance in Plants.
    Zeng C; Jia T; Gu T; Su J; Hu X
    Genes (Basel); 2021 Aug; 12(9):. PubMed ID: 34573325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal.
    Haider S; Raza A; Iqbal J; Shaukat M; Mahmood T
    Mol Biol Rep; 2022 Jun; 49(6):5771-5785. PubMed ID: 35182323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Heat stress and molecular mitigation approaches in orphan legume, Chickpea.
    Kumari P; Rastogi A; Yadav S
    Mol Biol Rep; 2020 Jun; 47(6):4659-4670. PubMed ID: 32133603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beat the heat: plant- and microbe-mediated strategies for crop thermotolerance.
    Shekhawat K; Almeida-Trapp M; García-Ramírez GX; Hirt H
    Trends Plant Sci; 2022 Aug; 27(8):802-813. PubMed ID: 35331665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in plant thermomemory.
    Nishad A; Nandi AK
    Plant Cell Rep; 2021 Jan; 40(1):19-27. PubMed ID: 32975635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breeding for plant heat tolerance at vegetative and reproductive stages.
    Driedonks N; Rieu I; Vriezen WH
    Plant Reprod; 2016 Jun; 29(1-2):67-79. PubMed ID: 26874710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars.
    Raza Q; Riaz A; Bashir K; Sabar M
    Plant Mol Biol; 2020 Sep; 104(1-2):97-112. PubMed ID: 32643113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement.
    Zenda T; Wang N; Dong A; Zhou Y; Duan H
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular insights into sensing, regulation and improving of heat tolerance in plants.
    Saini N; Nikalje GC; Zargar SM; Suprasanna P
    Plant Cell Rep; 2022 Mar; 41(3):799-813. PubMed ID: 34676458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties.
    Lin MY; Chai KH; Ko SS; Kuang LY; Lur HS; Charng YY
    Plant Physiol; 2014 Apr; 164(4):2045-53. PubMed ID: 24520156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High temperature susceptibility of sexual reproduction in crop plants.
    Lohani N; Singh MB; Bhalla PL
    J Exp Bot; 2020 Jan; 71(2):555-568. PubMed ID: 31560053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant heat stress: Concepts directing future research.
    Jagadish SVK; Way DA; Sharkey TD
    Plant Cell Environ; 2021 Jul; 44(7):1992-2005. PubMed ID: 33745205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous expression of heat stress-responsive AtPLC9 confers heat tolerance in transgenic rice.
    Liu Y; Liu X; Wang X; Gao K; Qi W; Ren H; Hu H; Sun D; Bai J; Zheng S
    BMC Plant Biol; 2020 Nov; 20(1):514. PubMed ID: 33176681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat Sensing and Lipid Reprograming as a Signaling Switch for Heat Stress Responses in Wheat.
    Abdelrahman M; Ishii T; El-Sayed M; Tran LP
    Plant Cell Physiol; 2020 Aug; 61(8):1399-1407. PubMed ID: 32467978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salicylic acid and nitric oxide signaling in plant heat stress.
    Rai KK; Pandey N; Rai SP
    Physiol Plant; 2020 Feb; 168(2):241-255. PubMed ID: 30843232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants.
    Hasanuzzaman M; Nahar K; Alam MM; Roychowdhury R; Fujita M
    Int J Mol Sci; 2013 May; 14(5):9643-84. PubMed ID: 23644891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L.
    Kaur R; Sinha K; Bhunia RK
    Mol Biol Rep; 2019 Apr; 46(2):2577-2593. PubMed ID: 30758807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.