These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33890464)

  • 1. General Trends in Core-Shell Preferences for Bimetallic Nanoparticles.
    Eom N; Messing ME; Johansson J; Deppert K
    ACS Nano; 2021 May; 15(5):8883-8895. PubMed ID: 33890464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicted trends of core-shell preferences for 132 late transition-metal binary-alloy nanoparticles.
    Wang LL; Johnson DD
    J Am Chem Soc; 2009 Oct; 131(39):14023-9. PubMed ID: 19754042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Scattering Simulations from Spherical Bimetallic Core-Shell Nanoparticles.
    Ruffino F
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33810270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melting Behavior of Bimetallic and Trimetallic Nanoparticles: A Review of MD Simulation Studies.
    Akbarzadeh H; Mehrjouei E; Abbaspour M; Shamkhali AN
    Top Curr Chem (Cham); 2021 Apr; 379(3):22. PubMed ID: 33890199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal description of heating-induced reshaping preference of core-shell bimetallic nanoparticles.
    Zhao Z; Xu H; Gao Y; Cheng D
    Nanoscale; 2019 Jan; 11(3):1386-1395. PubMed ID: 30604829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive kinetic Monte Carlo simulations of surface segregation in PdAu nanoparticles.
    Li L; Li X; Duan Z; Meyer RJ; Carr R; Raman S; Koziol L; Henkelman G
    Nanoscale; 2019 May; 11(21):10524-10535. PubMed ID: 31116210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous gas-phase synthesis of core-shell nanoparticles
    Snellman M; Eom N; Ek M; Messing ME; Deppert K
    Nanoscale Adv; 2021 Jun; 3(11):3041-3052. PubMed ID: 36133665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Stability of Platinum-Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core-Shell Structures.
    Huang R; Shao GF; Zhang Y; Wen YH
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12486-12493. PubMed ID: 28349693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of elemental composition on structural, thermal and hydration behavior of gold-silver bimetallic nanoparticles.
    G J; Varatharaj R; J MD
    J Mol Model; 2022 Feb; 28(3):53. PubMed ID: 35113278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.
    El-Naggar ME; Shaheen TI; Fouda MM; Hebeish AA
    Carbohydr Polym; 2016 Jan; 136():1128-36. PubMed ID: 26572455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: a perspective from molecular dynamics simulations.
    Huang R; Shao GF; Zeng XM; Wen YH
    Sci Rep; 2014 Nov; 4():7051. PubMed ID: 25394424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials.
    Bedford NM; Showalter AR; Woehl TJ; Hughes ZE; Lee S; Reinhart B; Ertem SP; Coughlin EB; Ren Y; Walsh TR; Bunker BA
    ACS Nano; 2016 Sep; 10(9):8645-59. PubMed ID: 27583654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Segregation in Bimetallic Nanoparticles: A Critical Issue in Electrocatalyst Engineering.
    Liao H; Fisher A; Xu ZJ
    Small; 2015 Jul; 11(27):3221-46. PubMed ID: 25823964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Cost Label-Free Biosensing Bimetallic Cellulose Strip with SILAR-Synthesized Silver Core-Gold Shell Nanoparticle Structures.
    Kim W; Lee JC; Lee GJ; Park HK; Lee A; Choi S
    Anal Chem; 2017 Jun; 89(12):6448-6454. PubMed ID: 28509533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-Encoded Morphological Evolution of Bimetallic Pd@Au Core-shell Nanoparticles from a High-indexed Core.
    Reddy Satyavolu NS; Pishevaresfahani N; Tan LH; Lu Y
    Nano Res; 2018 Sep; 11(9):4549-4561. PubMed ID: 30906510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.
    Huang R; Wen YH; Shao GF; Sun SG
    Phys Chem Chem Phys; 2016 Jun; 18(25):17010-7. PubMed ID: 27297782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of surface composition and segregation on AuAg bimetallic nanoparticles by MALDI MS.
    Liao S; Luo Z; Metternich JB; Zenobi R; Stellacci F
    Nanoscale; 2020 Nov; 12(44):22639-22644. PubMed ID: 33151213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From mixed to three-layer core/shell PtCu nanoparticles: ligand-induced surface segregation to enhance electrocatalytic activity.
    Dai C; Yang Y; Zhao Z; Fisher A; Liu Z; Cheng D
    Nanoscale; 2017 Jul; 9(26):8945-8951. PubMed ID: 28654116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and stability of nanoscale bimetallic clusters.
    Liu H; Hernandez ES
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1533-48. PubMed ID: 24749440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.