These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33890467)

  • 1. A Simple Explicit-Solvent Model of Polyampholyte Phase Behaviors and Its Ramifications for Dielectric Effects in Biomolecular Condensates.
    Wessén J; Pal T; Das S; Lin YH; Chan HS
    J Phys Chem B; 2021 May; 125(17):4337-4358. PubMed ID: 33890467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative roles of charge,
    Das S; Lin YH; Vernon RM; Forman-Kay JD; Chan HS
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28795-28805. PubMed ID: 33139563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates.
    Lin YH; Forman-Kay JD; Chan HS
    Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological soft matter: intrinsically disordered proteins in liquid-liquid phase separation and biomolecular condensates.
    Fonin AV; Antifeeva IA; Kuznetsova IM; Turoverov KK; Zaslavsky BY; Kulkarni P; Uversky VN
    Essays Biochem; 2022 Dec; 66(7):831-847. PubMed ID: 36350034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Details of Protein Condensates Probed by Microsecond Long Atomistic Simulations.
    Zheng W; Dignon GL; Jovic N; Xu X; Regy RM; Fawzi NL; Kim YC; Best RB; Mittal J
    J Phys Chem B; 2020 Dec; 124(51):11671-11679. PubMed ID: 33302617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins.
    Lin YH; Wessén J; Pal T; Das S; Chan HS
    Methods Mol Biol; 2023; 2563():51-94. PubMed ID: 36227468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-Specific Polyampholyte Phase Separation in Membraneless Organelles.
    Lin YH; Forman-Kay JD; Chan HS
    Phys Rev Lett; 2016 Oct; 117(17):178101. PubMed ID: 27824447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and sequential characteristics of phase separation and droplet formation for an intrinsically disordered region/protein ensemble.
    Chu WT; Wang J
    PLoS Comput Biol; 2021 Mar; 17(3):e1008672. PubMed ID: 33684117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications.
    Feng Z; Chen X; Wu X; Zhang M
    J Biol Chem; 2019 Oct; 294(40):14823-14835. PubMed ID: 31444270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties.
    Tesei G; Schulze TK; Crehuet R; Lindorff-Larsen K
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34716273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid-Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications.
    Cinar H; Fetahaj Z; Cinar S; Vernon RM; Chan HS; Winter RHA
    Chemistry; 2019 Oct; 25(57):13049-13069. PubMed ID: 31237369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unified analytical theory of heteropolymers for sequence-specific phase behaviors of polyelectrolytes and polyampholytes.
    Lin YH; Brady JP; Chan HS; Ghosh K
    J Chem Phys; 2020 Jan; 152(4):045102. PubMed ID: 32007034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unravelling the microscopic characteristics of intrinsically disordered proteins upon liquid-liquid phase separation.
    Wu S; Wen J; Perrett S
    Essays Biochem; 2022 Dec; 66(7):891-900. PubMed ID: 36524527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions.
    Brocca S; Grandori R; Longhi S; Uversky V
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-Liquid Phase Separation in Crowded Environments.
    André AAM; Spruijt E
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Silico Analysis of pH-Dependent Liquid-Liquid Phase Separation in Intrinsically Disordered Proteins.
    Pintado-Grima C; Bárcenas O; Ventura S
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Lattice Model of Charge-Pattern-Dependent Polyampholyte Phase Separation.
    Das S; Eisen A; Lin YH; Chan HS
    J Phys Chem B; 2018 May; 122(21):5418-5431. PubMed ID: 29397728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-chain and condensed-state behavior of hnRNPA1 from molecular simulations.
    Bauer DJ; Stelzl LS; Nikoubashman A
    J Chem Phys; 2022 Oct; 157(15):154903. PubMed ID: 36272811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical Formulation and Field-Theoretic Simulation of Sequence-Specific Phase Separation of Protein-Like Heteropolymers with Short- and Long-Spatial-Range Interactions.
    Wessén J; Das S; Pal T; Chan HS
    J Phys Chem B; 2022 Nov; 126(45):9222-9245. PubMed ID: 36343363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues.
    Li HR; Chiang WC; Chou PC; Wang WJ; Huang JR
    J Biol Chem; 2018 Apr; 293(16):6090-6098. PubMed ID: 29511089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.