These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33890467)

  • 21. Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters.
    Das S; Amin AN; Lin YH; Chan HS
    Phys Chem Chem Phys; 2018 Nov; 20(45):28558-28574. PubMed ID: 30397688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleic Acids Modulate Liquidity and Dynamics of Artificial Membraneless Organelles.
    Liu J; Zhorabek F; Chau Y
    ACS Macro Lett; 2022 Apr; 11(4):562-567. PubMed ID: 35575335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 14-3-3 Proteins are Potential Regulators of Liquid-Liquid Phase Separation.
    Huang X; Zheng Z; Wu Y; Gao M; Su Z; Huang Y
    Cell Biochem Biophys; 2022 Jun; 80(2):277-293. PubMed ID: 35142991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties.
    Dignon GL; Best RB; Mittal J
    Annu Rev Phys Chem; 2020 Apr; 71():53-75. PubMed ID: 32312191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determinants for intrinsically disordered protein recruitment into phase-separated protein condensates.
    Jo Y; Jang J; Song D; Park H; Jung Y
    Chem Sci; 2022 Jan; 13(2):522-530. PubMed ID: 35126984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomolecular condensates formed by designer minimalistic peptides.
    Baruch Leshem A; Sloan-Dennison S; Massarano T; Ben-David S; Graham D; Faulds K; Gottlieb HE; Chill JH; Lampel A
    Nat Commun; 2023 Jan; 14(1):421. PubMed ID: 36702825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components.
    Espinosa JR; Joseph JA; Sanchez-Burgos I; Garaizar A; Frenkel D; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13238-13247. PubMed ID: 32482873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-droplet surface-enhanced Raman scattering decodes the molecular determinants of liquid-liquid phase separation.
    Avni A; Joshi A; Walimbe A; Pattanashetty SG; Mukhopadhyay S
    Nat Commun; 2022 Jul; 13(1):4378. PubMed ID: 35902591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Composition-dependent thermodynamics of intracellular phase separation.
    Riback JA; Zhu L; Ferrolino MC; Tolbert M; Mitrea DM; Sanders DW; Wei MT; Kriwacki RW; Brangwynne CP
    Nature; 2020 May; 581(7807):209-214. PubMed ID: 32405004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomolecular condensates: insights into early and late steps of the HIV-1 replication cycle.
    Di Nunzio F; Uversky VN; Mouland AJ
    Retrovirology; 2023 Apr; 20(1):4. PubMed ID: 37029379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of Protein Phase Diagrams by Centrifugation.
    Milkovic NM; Mittag T
    Methods Mol Biol; 2020; 2141():685-702. PubMed ID: 32696384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The (un)structural biology of biomolecular liquid-liquid phase separation using NMR spectroscopy.
    Murthy AC; Fawzi NL
    J Biol Chem; 2020 Feb; 295(8):2375-2384. PubMed ID: 31911439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase Separation of Epstein-Barr Virus EBNA2 and Its Coactivator EBNALP Controls Gene Expression.
    Peng Q; Wang L; Qin Z; Wang J; Zheng X; Wei L; Zhang X; Zhang X; Liu C; Li Z; Wu Y; Li G; Yan Q; Ma J
    J Virol; 2020 Mar; 94(7):. PubMed ID: 31941785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping the per-residue surface electrostatic potential of CAPRIN1 along its phase-separation trajectory.
    Toyama Y; Rangadurai AK; Forman-Kay JD; Kay LE
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2210492119. PubMed ID: 36040869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unraveling Molecular Interactions in Liquid-Liquid Phase Separation of Disordered Proteins by Atomistic Simulations.
    Paloni M; Bailly R; Ciandrini L; Barducci A
    J Phys Chem B; 2020 Oct; 124(41):9009-9016. PubMed ID: 32936641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Liquid-Liquid Phase Separation in Biology: Specific Stoichiometric Molecular Interactions vs Promiscuous Interactions Mediated by Disordered Sequences.
    Feng Z; Jia B; Zhang M
    Biochemistry; 2021 Aug; 60(31):2397-2406. PubMed ID: 34291921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fundamental Challenges and Outlook in Simulating Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins.
    Bari KJ; Prakashchand DD
    J Phys Chem Lett; 2021 Feb; 12(6):1644-1656. PubMed ID: 33555894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein phase separation and its role in chromatin organization and diseases.
    Li J; Zhang Y; Chen X; Ma L; Li P; Yu H
    Biomed Pharmacother; 2021 Jun; 138():111520. PubMed ID: 33765580
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes.
    Ning W; Guo Y; Lin S; Mei B; Wu Y; Jiang P; Tan X; Zhang W; Chen G; Peng D; Chu L; Xue Y
    Nucleic Acids Res; 2020 Jan; 48(D1):D288-D295. PubMed ID: 31691822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dielectric-layer hybrid solvation model with spheroidal cavities in biomolecular simulations.
    Xue C; Deng S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016701. PubMed ID: 20365496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.