These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33890590)

  • 1. Rebound and scattering of motile
    Théry A; Wang Y; Dvoriashyna M; Eloy C; Elias F; Lauga E
    Soft Matter; 2021 May; 17(18):4857-4873. PubMed ID: 33890590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergent probability fluxes in confined microbial navigation.
    Cammann J; Schwarzendahl FJ; Ostapenko T; Lavrentovich D; Bäumchen O; Mazza MG
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34556571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams.
    Tainio O; Sohrabi F; Janarek N; Koivisto J; Puisto A; Viitanen L; Timonen JVI; Alava M
    Soft Matter; 2021 Jan; 17(1):145-152. PubMed ID: 33155584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping of swimming microalgae in foam.
    Roveillo Q; Dervaux J; Wang Y; Rouyer F; Zanchi D; Seuront L; Elias F
    J R Soc Interface; 2020 Jul; 17(168):20200077. PubMed ID: 32634367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotyping single-cell motility in microfluidic confinement.
    Bentley SA; Laeverenz-Schlogelhofer H; Anagnostidis V; Cammann J; Mazza MG; Gielen F; Wan KY
    Elife; 2022 Nov; 11():. PubMed ID: 36416411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hopping trajectories due to long-range interactions determine surface accumulation of microalgae.
    Buchner AJ; Muller K; Mehmood J; Tam D
    Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33980716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ciliary contact interactions dominate surface scattering of swimming eukaryotes.
    Kantsler V; Dunkel J; Polin M; Goldstein RE
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1187-92. PubMed ID: 23297240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic force measurements on swimming
    Böddeker TJ; Karpitschka S; Kreis CT; Magdelaine Q; Bäumchen O
    J R Soc Interface; 2020 Jan; 17(162):20190580. PubMed ID: 31937233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low angle quasi-elastic light scattering investigation of Chlamydomonas reinhardtii.
    Racey TJ; Hallett FR
    J Muscle Res Cell Motil; 1983 Jun; 4(3):321-31. PubMed ID: 6874917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axonemal motility in Chlamydomonas.
    Wakabayashi K; Kamiya R
    Methods Cell Biol; 2015; 127():387-402. PubMed ID: 25837401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steric scattering of rod-like swimmers in low Reynolds number environments.
    Hoeger K; Ursell T
    Soft Matter; 2021 Mar; 17(9):2479-2489. PubMed ID: 33503087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motile cells as probes for characterizing acoustofluidic devices.
    Kim M; Bayly PV; Meacham JM
    Lab Chip; 2021 Feb; 21(3):521-533. PubMed ID: 33507201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrous Flagellar Hairs of Chlamydomonas reinhardtii Do Not Enhance Swimming.
    Amador GJ; Wei D; Tam D; Aubin-Tam ME
    Biophys J; 2020 Jun; 118(12):2914-2925. PubMed ID: 32502384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels.
    Shum H; Gaffney EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063016. PubMed ID: 26764813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quasi-elastic light scattering and cinematographic investigation of motile Chlamydomonas reinhardtii.
    Racey TJ; Hallett R; Nickel B
    Biophys J; 1981 Sep; 35(3):557-71. PubMed ID: 7272452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.
    Park JW; Na SC; Nguyen TQ; Paik SM; Kang M; Hong D; Choi IS; Lee JH; Jeon NL
    Biotechnol Bioeng; 2015 Mar; 112(3):494-501. PubMed ID: 25220860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random walk of a swimmer in a low-Reynolds-number medium.
    Garcia M; Berti S; Peyla P; Rafaï S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):035301. PubMed ID: 21517551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-regulated adsorption and desorption of
    Catalan RE; Fragkopoulos AA; von Trott N; Kelterborn S; Baidukova O; Hegemann P; Bäumchen O
    Soft Matter; 2023 Jan; 19(2):306-314. PubMed ID: 36520090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameter screening in microfluidics based hydrodynamic single-cell trapping.
    Deng B; Li XF; Chen DY; You LD; Wang JB; Chen J
    ScientificWorldJournal; 2014; 2014():929163. PubMed ID: 25013872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic interactions among large populations of swimming micro-organisms.
    Delmotte B; Climent E; Plouraboué F
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():6-8. PubMed ID: 23923827
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.