These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1947 related articles for article (PubMed ID: 33890681)

  • 1. Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
    Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M
    Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT.
    Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B
    Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network.
    Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L
    Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artifact and Detail Attention Generative Adversarial Networks for Low-Dose CT Denoising.
    Zhang X; Han Z; Shangguan H; Han X; Cui X; Wang A
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3901-3918. PubMed ID: 34329159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SACNN: Self-Attention Convolutional Neural Network for Low-Dose CT Denoising With Self-Supervised Perceptual Loss Network.
    Li M; Hsu W; Xie X; Cong J; Gao W
    IEEE Trans Med Imaging; 2020 Jul; 39(7):2289-2301. PubMed ID: 31985412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-dose CT denoising with a high-level feature refinement and dynamic convolution network.
    Yang S; Pu Q; Lei C; Zhang Q; Jeon S; Yang X
    Med Phys; 2023 Jun; 50(6):3597-3611. PubMed ID: 36542402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel denoising method for CT images based on U-net and multi-attention.
    Zhang J; Niu Y; Shangguan Z; Gong W; Cheng Y
    Comput Biol Med; 2023 Jan; 152():106387. PubMed ID: 36495750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-scale feature aggregation and fusion network with self-supervised multi-level perceptual loss for textures preserving low-dose CT denoising.
    Zhang Y; Wan Z; Wang D; Meng J; Ma F; Guo Y; Liu J; Li G; Liu Y
    Phys Med Biol; 2024 Apr; 69(10):. PubMed ID: 38593821
    [No Abstract]   [Full Text] [Related]  

  • 11. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose reduction and image enhancement in micro-CT using deep learning.
    Muller FM; Maebe J; Vanhove C; Vandenberghe S
    Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-dose CT denoising using a Progressive Wasserstein generative adversarial network.
    Wang G; Hu X
    Comput Biol Med; 2021 Aug; 135():104625. PubMed ID: 34246157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An unsupervised two-step training framework for low-dose computed tomography denoising.
    Kim W; Lee J; Choi JH
    Med Phys; 2024 Feb; 51(2):1127-1144. PubMed ID: 37432026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Method of CT Image Denoising Based on Residual Encoder-Decoder Network.
    Liu Y
    J Healthc Eng; 2021; 2021():2384493. PubMed ID: 34603643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray CT image denoising with MINF: A modularized iterative network framework for data from multiple dose levels.
    Du Q; Tang Y; Wang J; Hou X; Wu Z; Li M; Yang X; Zheng J
    Comput Biol Med; 2023 Jan; 152():106419. PubMed ID: 36527781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two stage residual CNN for texture denoising and structure enhancement on low dose CT image.
    Huang L; Jiang H; Li S; Bai Z; Zhang J
    Comput Methods Programs Biomed; 2020 Feb; 184():105115. PubMed ID: 31627148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic high-energy computed tomography image via a Wasserstein generative adversarial network with the convolutional block attention module.
    Kong H; Yuan Z; Zhou H; Liang G; Yan Z; Cheng G; Hu Z
    Quant Imaging Med Surg; 2023 Jul; 13(7):4365-4379. PubMed ID: 37456308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total-body low-dose CT image denoising using a prior knowledge transfer technique with a contrastive regularization mechanism.
    Fu M; Duan Y; Cheng Z; Qin W; Wang Y; Liang D; Hu Z
    Med Phys; 2023 May; 50(5):2971-2984. PubMed ID: 36542423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 98.