These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3389108)

  • 1. Changes in cochlear blood flow during acoustic stimulation as determined by 14C-iodoantipyrine autoradiography.
    Ryan AF; Axelsson A; Myers R; Woolf NK
    Acta Otolaryngol; 1988; 105(3-4):232-41. PubMed ID: 3389108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cochlear deoxyglucose uptake: relationship to stimulus intensity.
    Goodwin PC; Ryan AF; Sharp FR; Woolf NK; Davidson TM
    Hear Res; 1984 Sep; 15(3):215-24. PubMed ID: 6501111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure.
    Scheibe F; Haupt H; Ludwig C
    Eur Arch Otorhinolaryngol; 1993; 250(5):281-5. PubMed ID: 8217130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser Doppler measurement of cochlear blood flow changes during conditioning noise exposure.
    Attanasio G; Buongiorno G; Piccoli F; Mafera B; Cordier A; Barbara M; Filipo R
    Acta Otolaryngol; 2001 Jun; 121(4):465-9. PubMed ID: 11508505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise exposure induces up-regulation of ecto-nucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea.
    Vlajkovic SM; Housley GD; Muñoz DJ; Robson SC; Sévigny J; Wang CJ; Thorne PR
    Neuroscience; 2004; 126(3):763-73. PubMed ID: 15183524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of loud sound exposure on the cochlear blood flow.
    Okamoto A; Tamura T; Yokoyama K; Kobayashi N; Hasegawa M
    Acta Otolaryngol; 1990; 109(5-6):378-82. PubMed ID: 2141752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise-induced changes in red blood cell velocity in lateral wall vessels of the rat cochlea.
    Quirk WS; Shapiro BD; Miller JM; Nuttall AL
    Hear Res; 1991 Mar; 52(1):217-23. PubMed ID: 2061209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanoelectrical transducer channel is not required for regulation of cochlear blood flow during loud sound exposure in mice.
    Burwood GWS; Dziennis S; Wilson T; Foster S; Zhang Y; Liu G; Yang J; Elkins S; Nuttall AL
    Sci Rep; 2020 Jun; 10(1):9229. PubMed ID: 32514013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dorsal raphe nucleus stimulation on cerebral blood flow and flow-metabolism coupling in the conscious rat.
    Cudennec A; Bonvento G; Duverger D; Lacombe P; Seylaz J; MacKenzie ET
    Neuroscience; 1993 Jul; 55(2):395-401. PubMed ID: 8377932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic overstimulation activates 5'-AMP-activated protein kinase through a temporary decrease in ATP level in the cochlear spiral ligament prior to permanent hearing loss in mice.
    Nagashima R; Yamaguchi T; Kuramoto N; Ogita K
    Neurochem Int; 2011 Nov; 59(6):812-20. PubMed ID: 21906645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a double-tracer autoradiographic technique for the measurement of both local cerebral glucose metabolism and local cerebral blood flow.
    Jones SC; Greenberg JH
    J Cereb Blood Flow Metab; 1985 Jun; 5(2):335-7. PubMed ID: 3988832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of loud sound on red blood cell velocity and blood vessel diameter in the cochlea.
    Quirk WS; Avinash G; Nuttall AL; Miller JM
    Hear Res; 1992 Nov; 63(1-2):102-7. PubMed ID: 1464564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory stimulation alters the pattern of 2-deoxyglucose uptake in the inner ear.
    Ryan AF; Goodwin P; Woolf NK; Sharp F
    Brain Res; 1982 Feb; 234(2):213-25. PubMed ID: 7059827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on regional blood flow of the mouse using whole-body autoradiography of 14C-iodoantipyrine.
    Shimada M; Abe S; Imahayashi T
    Histochemistry; 1982; 75(2):179-90. PubMed ID: 7129966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of rat inner ear blood flow using the iodo[(14)C]antipyrine technique.
    Lyon MJ; Jensen RC
    Hear Res; 2001 Mar; 153(1-2):164-73. PubMed ID: 11223306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cochlear blood flow. The effect of noise at 60 minutes' exposure.
    Prazma J; Vance SG; Bolster DE; Pillsbury HC; Postma DS
    Arch Otolaryngol Head Neck Surg; 1987 Jan; 113(1):36-9. PubMed ID: 3790282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochlear blood flow. The effect of six hours of noise exposure.
    Prazma J; Smalley WE; Covington S; Pillsbury HC
    Arch Otolaryngol Head Neck Surg; 1988 Jun; 114(6):657-60. PubMed ID: 3365338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cochlear vascular and electrophysiological effects in the guinea pig to 4 kHz pure tones of different durations and intensities.
    Vertes D; Axelsson A; Miller J; Lidén G
    Acta Otolaryngol; 1981; 92(1-2):15-24. PubMed ID: 7315247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by [14C]iodoantipyrine autoradiography following middle cerebral artery occlusion.
    Tamura A; Graham DI; McCulloch J; Teasdale GM
    J Cereb Blood Flow Metab; 1981; 1(1):61-9. PubMed ID: 7328139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of cubic difference tones generated by high-intensity stimuli: effect of ischemia and auditory fatigue on the gerbil cochlea.
    Mom T; Bonfils P; Gilain L; Avan P
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1477-88. PubMed ID: 11572358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.