These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33891217)

  • 1. Rate and Temporal Coding of Regular and Irregular Pulse Trains in Auditory Midbrain of Normal-Hearing and Cochlear-Implanted Rabbits.
    Su Y; Chung Y; Goodman DFM; Hancock KE; Delgutte B
    J Assoc Res Otolaryngol; 2021 Jun; 22(3):319-347. PubMed ID: 33891217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: comparison with anesthetized preparations.
    Chung Y; Hancock KE; Nam SI; Delgutte B
    J Neurosci; 2014 Jan; 34(1):218-31. PubMed ID: 24381283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural ITD coding with bilateral cochlear implants: effect of binaurally coherent jitter.
    Hancock KE; Chung Y; Delgutte B
    J Neurophysiol; 2012 Aug; 108(3):714-28. PubMed ID: 22592306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Coding of Interaural Time Differences with Bilateral Cochlear Implants in Unanesthetized Rabbits.
    Chung Y; Hancock KE; Delgutte B
    J Neurosci; 2016 May; 36(20):5520-31. PubMed ID: 27194332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representations of Time-Varying Cochlear Implant Stimulation in Auditory Cortex of Awake Marmosets (
    Johnson LA; Della Santina CC; Wang X
    J Neurosci; 2017 Jul; 37(29):7008-7022. PubMed ID: 28634306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Better temporal neural coding with cochlear implants in awake animals.
    Chung Y; Hancock KE; Nam SI; Delgutte B
    Adv Exp Med Biol; 2013; 787():353-61. PubMed ID: 23716241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pitch of harmonic complex tones: rate and temporal coding of envelope repetition rate in inferior colliculus of unanesthetized rabbits.
    Su Y; Delgutte B
    J Neurophysiol; 2019 Dec; 122(6):2468-2485. PubMed ID: 31664871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate pitch discrimination in cochlear implant users with the use of double pulses and different interpulse intervals.
    Pieper SH; Bahmer A
    Cochlear Implants Int; 2019 Nov; 20(6):312-323. PubMed ID: 31448701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Neural Coding of ITD with Bilateral Cochlear Implants by Introducing Short Inter-pulse Intervals.
    Buechel BD; Hancock KE; Chung Y; Delgutte B
    J Assoc Res Otolaryngol; 2018 Dec; 19(6):681-702. PubMed ID: 30191423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pitch and loudness matching of unmodulated and modulated stimuli in cochlear implantees.
    Vandali A; Sly D; Cowan R; van Hoesel R
    Hear Res; 2013 Aug; 302():32-49. PubMed ID: 23685148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal-pitch sensitivity in electric hearing with amplitude modulation and inserted pulses with short inter-pulse intervals.
    Lindenbeck MJ; Laback B; Majdak P; Srinivasan S
    J Acoust Soc Am; 2020 Feb; 147(2):777. PubMed ID: 32113255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal Pitch Sensitivity in an Animal Model: Psychophysics and Scalp Recordings : Temporal Pitch Sensitivity in Cat.
    Richardson ML; Guérit F; Gransier R; Wouters J; Carlyon RP; Middlebrooks JC
    J Assoc Res Otolaryngol; 2022 Aug; 23(4):491-512. PubMed ID: 35668206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of phase duration and pulse rate on loudness and pitch percepts in the first auditory midbrain implant patients: Comparison to cochlear implant and auditory brainstem implant results.
    Lim HH; Lenarz T; Joseph G; Battmer RD; Patrick JF; Lenarz M
    Neuroscience; 2008 Jun; 154(1):370-80. PubMed ID: 18384971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners.
    Churchill TH; Kan A; Goupell MJ; Litovsky RY
    J Acoust Soc Am; 2014 Sep; 136(3):1246. PubMed ID: 25190398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of neurons in the feline inferior colliculus to modulated electrical stimuli applied on and within the ventral cochlear nucleus; Implications for an advanced auditory brainstem implant.
    McCreery D; Yadev K; Han M
    Hear Res; 2018 Jun; 363():85-97. PubMed ID: 29573880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between auditory nerve activity and temporal pitch perception in cochlear implant users.
    Carlyon RP; Deeks JM
    Adv Exp Med Biol; 2013; 787():363-71. PubMed ID: 23716242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural ITD Sensitivity and Temporal Coding with Cochlear Implants in an Animal Model of Early-Onset Deafness.
    Chung Y; Buechel BD; Sunwoo W; Wagner JD; Delgutte B
    J Assoc Res Otolaryngol; 2019 Feb; 20(1):37-56. PubMed ID: 30623319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual temporal pitch percepts from acoustic and electric amplitude-modulated pulse trains.
    McKay CM; Carlyon RP
    J Acoust Soc Am; 1999 Jan; 105(1):347-57. PubMed ID: 9921661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unanesthetized auditory cortex exhibits multiple codes for gaps in cochlear implant pulse trains.
    Kirby AE; Middlebrooks JC
    J Assoc Res Otolaryngol; 2012 Feb; 13(1):67-80. PubMed ID: 21969022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The burst gap is a peripheral temporal code for pitch perception that is shared across audition and touch.
    Sharma D; Ng KKW; Birznieks I; Vickery RM
    Sci Rep; 2022 Jun; 12(1):11014. PubMed ID: 35773321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.