These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33891462)

  • 41. Signatures of Kitaev Interactions in the van der Waals Ferromagnet VI_{3}.
    Gu Y; Gu Y; Liu F; Ohira-Kawamura S; Murai N; Zhao J
    Phys Rev Lett; 2024 Jun; 132(24):246702. PubMed ID: 38949369
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chirality-induced magnon transport in AA-stacked bilayer honeycomb chiral magnets.
    Owerre SA
    J Phys Condens Matter; 2016 Nov; 28(47):47LT02. PubMed ID: 27636333
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unraveling materials Berry curvature and Chern numbers from real-time evolution of Bloch states.
    Shin D; Sato SA; Hübener H; De Giovannini U; Kim J; Park N; Rubio A
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4135-4140. PubMed ID: 30765519
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nontrivial topological phases on the stuffed honeycomb lattice.
    Sil A; Kumar Ghosh A
    J Phys Condens Matter; 2020 Jan; 32(2):025601. PubMed ID: 31550694
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anomalous Thermal Hall Effect in an Insulating van der Waals Magnet.
    Zhang H; Xu C; Carnahan C; Sretenovic M; Suri N; Xiao D; Ke X
    Phys Rev Lett; 2021 Dec; 127(24):247202. PubMed ID: 34951793
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tunable anomalous Hall conductivity through volume-wise magnetic competition in a topological kagome magnet.
    Guguchia Z; Verezhak JAT; Gawryluk DJ; Tsirkin SS; Yin JX; Belopolski I; Zhou H; Simutis G; Zhang SS; Cochran TA; Chang G; Pomjakushina E; Keller L; Skrzeczkowska Z; Wang Q; Lei HC; Khasanov R; Amato A; Jia S; Neupert T; Luetkens H; Hasan MZ
    Nat Commun; 2020 Jan; 11(1):559. PubMed ID: 31992705
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intrinsic second-order magnon thermal Hall effect.
    Li JC; Zhu ZG
    J Phys Condens Matter; 2024 Jul; 36(39):. PubMed ID: 38917843
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antiferromagnetic Kitaev interaction in
    Kim C; Jeong J; Lin G; Park P; Masuda T; Asai S; Itoh S; Kim HS; Zhou H; Ma J; Park JG
    J Phys Condens Matter; 2021 Nov; 34(4):. PubMed ID: 34517360
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Competing antiferromagnetic-ferromagnetic states in a
    Vivanco HK; Trump BA; Brown CM; McQueen TM
    Phys Rev B; 2020 Dec; 102(22):. PubMed ID: 37719682
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field.
    Liu ZX; Normand B
    Phys Rev Lett; 2018 May; 120(18):187201. PubMed ID: 29775347
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge.
    Nayak AK; Fischer JE; Sun Y; Yan B; Karel J; Komarek AC; Shekhar C; Kumar N; Schnelle W; Kübler J; Felser C; Parkin SS
    Sci Adv; 2016 Apr; 2(4):e1501870. PubMed ID: 27152355
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Field-linear anomalous Hall effect and Berry curvature induced by spin chirality in the kagome antiferromagnet Mn
    Li X; Koo J; Zhu Z; Behnia K; Yan B
    Nat Commun; 2023 Mar; 14(1):1642. PubMed ID: 36964128
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnetocaloric effect of topological excitations in Kitaev magnets.
    Li H; Lv E; Xi N; Gao Y; Qi Y; Li W; Su G
    Nat Commun; 2024 Aug; 15(1):7011. PubMed ID: 39147763
    [TBL] [Abstract][Full Text] [Related]  

  • 54. General nonlinear Hall current in magnetic insulators beyond the quantum anomalous Hall effect.
    Kaplan D; Holder T; Yan B
    Nat Commun; 2023 May; 14(1):3053. PubMed ID: 37236923
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Observation of the magnon Hall effect.
    Onose Y; Ideue T; Katsura H; Shiomi Y; Nagaosa N; Tokura Y
    Science; 2010 Jul; 329(5989):297-9. PubMed ID: 20647460
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermal Hall Effect Induced by Magnon-Phonon Interactions.
    Zhang X; Zhang Y; Okamoto S; Xiao D
    Phys Rev Lett; 2019 Oct; 123(16):167202. PubMed ID: 31702335
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Topological Magnons with Nodal-Line and Triple-Point Degeneracies: Implications for Thermal Hall Effect in Pyrochlore Iridates.
    Hwang K; Trivedi N; Randeria M
    Phys Rev Lett; 2020 Jul; 125(4):047203. PubMed ID: 32794830
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Magnon thermal Hall effect via emergent SU(3) flux on the antiferromagnetic skyrmion lattice.
    Takeda H; Kawano M; Tamura K; Akazawa M; Yan J; Waki T; Nakamura H; Sato K; Narumi Y; Hagiwara M; Yamashita M; Hotta C
    Nat Commun; 2024 Jan; 15(1):566. PubMed ID: 38263303
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spin chirality induced skew scattering and anomalous Hall effect in chiral magnets.
    Ishizuka H; Nagaosa N
    Sci Adv; 2018 Feb; 4(2):eaap9962. PubMed ID: 29487909
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet.
    Hirata Y; Kim DH; Kim SK; Lee DK; Oh SH; Kim DY; Nishimura T; Okuno T; Futakawa Y; Yoshikawa H; Tsukamoto A; Tserkovnyak Y; Shiota Y; Moriyama T; Choe SB; Lee KJ; Ono T
    Nat Nanotechnol; 2019 Mar; 14(3):232-236. PubMed ID: 30664756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.