These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 33891781)

  • 1. Quantum Plasmonics: Energy Transport Through Plasmonic Gap.
    Lee J; Jeon DJ; Yeo JS
    Adv Mater; 2021 Nov; 33(47):e2006606. PubMed ID: 33891781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing the quantum regime in tunnelling plasmonics.
    Savage KJ; Hawkeye MM; Esteban R; Borisov AG; Aizpurua J; Baumberg JJ
    Nature; 2012 Nov; 491(7425):574-7. PubMed ID: 23135399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wedge Waveguides and Resonators for Quantum Plasmonics.
    Kress SJ; Antolinez FV; Richner P; Jayanti SV; Kim DK; Prins F; Riedinger A; Fischer MP; Meyer S; McPeak KM; Poulikakos D; Norris DJ
    Nano Lett; 2015 Sep; 15(9):6267-75. PubMed ID: 26284499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From molecular design and materials construction to organic nanophotonic devices.
    Zhang C; Yan Y; Zhao YS; Yao J
    Acc Chem Res; 2014 Dec; 47(12):3448-58. PubMed ID: 25343682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching plasmonic nanogaps between classical and quantum regimes with supramolecular interactions.
    Zhang C; Li D; Zhang G; Wang X; Mao L; Gan Q; Ding T; Xu H
    Sci Adv; 2022 Feb; 8(5):eabj9752. PubMed ID: 35119919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic metal nanostructures with extremely small features: new effects, fabrication and applications.
    Shi H; Zhu X; Zhang S; Wen G; Zheng M; Duan H
    Nanoscale Adv; 2021 Jul; 3(15):4349-4369. PubMed ID: 36133477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-field light design with colloidal quantum dots for photonics and plasmonics.
    Kress SJ; Richner P; Jayanti SV; Galliker P; Kim DK; Poulikakos D; Norris DJ
    Nano Lett; 2014 Oct; 14(10):5827-33. PubMed ID: 25180812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear Graphene Nanoplasmonics.
    Cox JD; GarcĂ­a de Abajo FJ
    Acc Chem Res; 2019 Sep; 52(9):2536-2547. PubMed ID: 31448890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observing optical plasmons on a single nanometer scale.
    Cohen M; Shavit R; Zalevsky Z
    Sci Rep; 2014 Feb; 4():4096. PubMed ID: 24556874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active quantum plasmonics.
    Marinica DC; Zapata M; Nordlander P; Kazansky AK; M Echenique P; Aizpurua J; Borisov AG
    Sci Adv; 2015 Dec; 1(11):e1501095. PubMed ID: 26824066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trends of Biosensing: Plasmonics through Miniaturization and Quantum Sensing.
    Simone G
    Crit Rev Anal Chem; 2023 Jan; ():1-26. PubMed ID: 36601882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of Wavelength-Dependent Quantum Plasmon Tunneling with Varying the Thickness of Graphene Spacer.
    Lee KJ; Kim S; Hong W; Park H; Jang MS; Yu K; Choi SY
    Sci Rep; 2019 Feb; 9(1):1199. PubMed ID: 30718711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering.
    Lin L; Zhang Q; Li X; Qiu M; Jiang X; Jin W; Gu H; Lei DY; Ye J
    ACS Nano; 2018 Jul; 12(7):6492-6503. PubMed ID: 29924592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical Processes behind Plasmonic Applications.
    Babicheva VE
    Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured metals for light-based technologies.
    Gordon R
    Nanotechnology; 2019 May; 30(21):212001. PubMed ID: 30865589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending Plasmonic Enhancement Limit with Blocked Electron Tunneling by Monolayer Hexagonal Boron Nitride.
    Chen S; Li P; Zhang C; Wu W; Zhou G; Zhang C; Weng S; Ding T; Wu DY; Yang L
    Nano Lett; 2023 Jun; 23(12):5445-5452. PubMed ID: 36995130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible quantum plasmonics from metallic nanodimers.
    Alpeggiani F; D'Agostino S; Sanvitto D; Gerace D
    Sci Rep; 2016 Oct; 6():34772. PubMed ID: 27752037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced detection of broadband incoherent light with nanoridge plasmonics.
    Kim JH; Yeo JS
    Nano Lett; 2015 Apr; 15(4):2291-7. PubMed ID: 25756222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.