These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering. Zhu W; Crozier KB Nat Commun; 2014 Oct; 5():5228. PubMed ID: 25311008 [TBL] [Abstract][Full Text] [Related]
26. Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. Koo Y; Moon T; Kang M; Joo H; Lee C; Lee H; Kravtsov V; Park KD Light Sci Appl; 2024 Jan; 13(1):30. PubMed ID: 38272869 [TBL] [Abstract][Full Text] [Related]
27. Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers. Song B; Yao Y; Groenewald RE; Wang Y; Liu H; Wang Y; Li Y; Liu F; Cronin SB; Schwartzberg AM; Cabrini S; Haas S; Wu W ACS Nano; 2017 Jun; 11(6):5836-5843. PubMed ID: 28599108 [TBL] [Abstract][Full Text] [Related]
28. Active spoof plasmonics: from design to applications. Ren Y; Zhang J; Gao X; Zheng X; Liu X; Cui TJ J Phys Condens Matter; 2021 Nov; 34(5):. PubMed ID: 34673556 [TBL] [Abstract][Full Text] [Related]
29. Quantum Electrodynamic Behavior of Chlorophyll in a Plasmonic Nanocavity. Kokin E; An HJ; Koo D; Han S; Whang K; Kang T; Choi I; Lee LP Nano Lett; 2022 Dec; 22(24):9861-9868. PubMed ID: 36484527 [TBL] [Abstract][Full Text] [Related]
30. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. Hajisalem G; Nezami MS; Gordon R Nano Lett; 2014 Nov; 14(11):6651-4. PubMed ID: 25322471 [TBL] [Abstract][Full Text] [Related]
33. Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps with Sub-nanometer Precision. Song B; Jiang Z; Liu Z; Wang Y; Liu F; Cronin SB; Yang H; Meng D; Chen B; Hu P; Schwartzberg AM; Cabrini S; Haas S; Wu W ACS Nano; 2020 Nov; 14(11):14769-14778. PubMed ID: 33095557 [TBL] [Abstract][Full Text] [Related]
34. Single Photon Sources in Atomically Thin Materials. Toth M; Aharonovich I Annu Rev Phys Chem; 2019 Jun; 70():123-142. PubMed ID: 30735459 [TBL] [Abstract][Full Text] [Related]
35. An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method. Ding K; Chan CT J Phys Condens Matter; 2018 Feb; 30(8):084007. PubMed ID: 29283109 [TBL] [Abstract][Full Text] [Related]
36. Review of Biosensors Based on Plasmonic-Enhanced Processes in the Metallic and Meta-Material-Supported Nanostructures. Verma S; Pathak AK; Rahman BMA Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675314 [TBL] [Abstract][Full Text] [Related]
37. A Nanowire-Based Plasmonic Quantum Dot Laser. Ho J; Tatebayashi J; Sergent S; Fong CF; Ota Y; Iwamoto S; Arakawa Y Nano Lett; 2016 Apr; 16(4):2845-50. PubMed ID: 27030886 [TBL] [Abstract][Full Text] [Related]
39. Engineering Graphene Grain Boundaries for Plasmonic Multi-Excitation and Hotspots. Ma T; Yao B; Zheng Z; Liu Z; Ma W; Chen M; Chen H; Deng S; Xu N; Bao Q; Sun DM; Cheng HM; Ren W ACS Nano; 2022 Jun; 16(6):9041-9048. PubMed ID: 35696451 [TBL] [Abstract][Full Text] [Related]
40. Molecular Plasmonics with Metamaterials. Wang P; Krasavin AV; Liu L; Jiang Y; Li Z; Guo X; Tong L; Zayats AV Chem Rev; 2022 Oct; 122(19):15031-15081. PubMed ID: 36194441 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]