BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 33891865)

  • 1. Engineering spatial-organized cardiac organoids for developmental toxicity testing.
    Hoang P; Kowalczewski A; Sun S; Winston TS; Archilla AM; Lemus SM; Ercan-Sencicek AG; Gupta AR; Liu W; Kontaridis MI; Amack JD; Ma Z
    Stem Cell Reports; 2021 May; 16(5):1228-1244. PubMed ID: 33891865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling Morphology and Functions of Cardiac Organoids by Two-Dimensional Geometrical Templates.
    Hoang P; Sun S; Tarris BA; Ma Z
    Cells Tissues Organs; 2023; 212(1):64-73. PubMed ID: 35008091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid.
    Kupfer ME; Lin WH; Ravikumar V; Qiu K; Wang L; Gao L; Bhuiyan DB; Lenz M; Ai J; Mahutga RR; Townsend D; Zhang J; McAlpine MC; Tolkacheva EG; Ogle BM
    Circ Res; 2020 Jul; 127(2):207-224. PubMed ID: 32228120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design optimization of geometrically confined cardiac organoids enabled by machine learning techniques.
    Kowalczewski A; Sun S; Mai NY; Song Y; Hoang P; Liu X; Yang H; Ma Z
    Cell Rep Methods; 2024 Jun; 4(6):100798. PubMed ID: 38889687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust generation of human-chambered cardiac organoids from pluripotent stem cells for improved modelling of cardiovascular diseases.
    Ho BX; Pang JKS; Chen Y; Loh YH; An O; Yang HH; Seshachalam VP; Koh JLY; Chan WK; Ng SY; Soh BS
    Stem Cell Res Ther; 2022 Dec; 13(1):529. PubMed ID: 36544188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Stem Cell Self-organization to Build Better Organoids.
    Brassard JA; Lutolf MP
    Cell Stem Cell; 2019 Jun; 24(6):860-876. PubMed ID: 31173716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomaterial-guided stem cell organoid engineering for modeling development and diseases.
    Hoang P; Ma Z
    Acta Biomater; 2021 Sep; 132():23-36. PubMed ID: 33486104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells.
    Hoang P; Wang J; Conklin BR; Healy KE; Ma Z
    Nat Protoc; 2018 Apr; 13(4):723-737. PubMed ID: 29543795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ generation of human brain organoids on a micropillar array.
    Zhu Y; Wang L; Yu H; Yin F; Wang Y; Liu H; Jiang L; Qin J
    Lab Chip; 2017 Aug; 17(17):2941-2950. PubMed ID: 28752164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro models of the human heart.
    Hofbauer P; Jahnel SM; Mendjan S
    Development; 2021 Aug; 148(16):. PubMed ID: 34423833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural organoids for disease phenotyping, drug screening and developmental biology studies.
    Hartley BJ; Brennand KJ
    Neurochem Int; 2017 Jun; 106():85-93. PubMed ID: 27744003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids.
    Mun SJ; Ryu JS; Lee MO; Son YS; Oh SJ; Cho HS; Son MY; Kim DS; Kim SJ; Yoo HJ; Lee HJ; Kim J; Jung CR; Chung KS; Son MJ
    J Hepatol; 2019 Nov; 71(5):970-985. PubMed ID: 31299272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Spheroids to Organoids: The Next Generation of Model Systems of Human Cardiac Regeneration in a Dish.
    Scalise M; Marino F; Salerno L; Cianflone E; Molinaro C; Salerno N; De Angelis A; Viglietto G; Urbanek K; Torella D
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34947977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal and cardiac toxicity of pharmacological compounds identified through transcriptomic analysis of human pluripotent stem cell-derived embryoid bodies.
    Konala VBR; Nandakumar S; Surendran H; Datar S; Bhonde R; Pal R
    Toxicol Appl Pharmacol; 2021 Dec; 433():115792. PubMed ID: 34742744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro generation of human pluripotent stem cell derived lung organoids.
    Dye BR; Hill DR; Ferguson MA; Tsai YH; Nagy MS; Dyal R; Wells JM; Mayhew CN; Nattiv R; Klein OD; White ES; Deutsch GH; Spence JR
    Elife; 2015 Mar; 4():. PubMed ID: 25803487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease.
    Lewis-Israeli YR; Wasserman AH; Gabalski MA; Volmert BD; Ming Y; Ball KA; Yang W; Zou J; Ni G; Pajares N; Chatzistavrou X; Li W; Zhou C; Aguirre A
    Nat Commun; 2021 Aug; 12(1):5142. PubMed ID: 34446706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem Cells.
    Ho BX; Pek NMQ; Soh BS
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29561796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex Organ Construction from Human Pluripotent Stem Cells for Biological Research and Disease Modeling with New Emerging Techniques.
    Matsumoto R; Yamamoto T; Takahashi Y
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications.
    Goldfracht I; Efraim Y; Shinnawi R; Kovalev E; Huber I; Gepstein A; Arbel G; Shaheen N; Tiburcy M; Zimmermann WH; Machluf M; Gepstein L
    Acta Biomater; 2019 Jul; 92():145-159. PubMed ID: 31075518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioengineering tissue morphogenesis and function in human neural organoids.
    Fedorchak NJ; Iyer N; Ashton RS
    Semin Cell Dev Biol; 2021 Mar; 111():52-59. PubMed ID: 32540123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.