BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33892146)

  • 1. Computational resources in the management of antibiotic resistance: Speeding up drug discovery.
    Maryam L; Usmani SS; Raghava GPS
    Drug Discov Today; 2021 Sep; 26(9):2138-2151. PubMed ID: 33892146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational models, databases and tools for antibiotic combinations.
    Lv J; Liu G; Hao J; Ju Y; Sun B; Sun Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35915052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overview of bioinformatic methods for analysis of antibiotic resistome from genome and metagenome data.
    Lee K; Kim DW; Cha CJ
    J Microbiol; 2021 Mar; 59(3):270-280. PubMed ID: 33624264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis.
    Biswas S; Raoult D; Rolain JM
    Int J Antimicrob Agents; 2008 Sep; 32(3):207-20. PubMed ID: 18619818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems-Level Chemical Biology to Accelerate Antibiotic Drug Discovery.
    Farha MA; French S; Brown ED
    Acc Chem Res; 2021 Apr; 54(8):1909-1920. PubMed ID: 33787225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consolidating and Exploring Antibiotic Resistance Gene Data Resources.
    Xavier BB; Das AJ; Cochrane G; De Ganck S; Kumar-Singh S; Aarestrup FM; Goossens H; Malhotra-Kumar S
    J Clin Microbiol; 2016 Apr; 54(4):851-9. PubMed ID: 26818666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes.
    Gupta SK; Padmanabhan BR; Diene SM; Lopez-Rojas R; Kempf M; Landraud L; Rolain JM
    Antimicrob Agents Chemother; 2014; 58(1):212-20. PubMed ID: 24145532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Informatics resources for tuberculosis--towards drug discovery.
    Sundaramurthi JC; Brindha S; Reddy TB; Hanna LE
    Tuberculosis (Edinb); 2012 Mar; 92(2):133-8. PubMed ID: 21943870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SYN-View: A Phylogeny-Based Synteny Exploration Tool for the Identification of Gene Clusters Linked to Antibiotic Resistance.
    Stahlecker J; Mingyar E; Ziemert N; Mungan MD
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33396183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted antibiotic discovery through biosynthesis-associated resistance determinants: target directed genome mining.
    O'Neill EC; Schorn M; Larson CB; Millán-Aguiñaga N
    Crit Rev Microbiol; 2019 May; 45(3):255-277. PubMed ID: 30985219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Future of Antibiotics: Emerging Technologies and Stewardship.
    Fortman JL; Mukhopadhyay A
    Trends Microbiol; 2016 Jul; 24(7):515-517. PubMed ID: 27229181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using bacterial genomes and essential genes for the development of new antibiotics.
    Fields FR; Lee SW; McConnell MJ
    Biochem Pharmacol; 2017 Jun; 134():74-86. PubMed ID: 27940263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent development of computational resources for new antibiotics discovery.
    Kim HU; Blin K; Lee SY; Weber T
    Curr Opin Microbiol; 2017 Oct; 39():113-120. PubMed ID: 29156309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatics approaches for new drug discovery: a review.
    Malathi K; Ramaiah S
    Biotechnol Genet Eng Rev; 2018 Oct; 34(2):243-260. PubMed ID: 30064294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico analysis of antibiotic resistance genes in the gut microflora of individuals from diverse geographies and age-groups.
    Ghosh TS; Gupta SS; Nair GB; Mande SS
    PLoS One; 2013; 8(12):e83823. PubMed ID: 24391833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Major discrepancy between factual antibiotic resistance and consumption in South of France: analysis of 539,037 bacterial strains.
    Diallo OO; Baron SA; Dubourg G; Chaudet H; Halfon P; Camiade S; Comte B; Joubert S; François A; Seyral P; Parisot F; Casalta JP; Ruimy R; Maruejouls C; Achiardy JC; Burignat S; Carvajal J; Delaunay E; Meyer S; Levy PY; Roussellier P; Brunet P; Bosi C; Stolidi P; Arzouni JP; Gay G; Hance P; Colson P; Raoult D; Rolain JM
    Sci Rep; 2020 Oct; 10(1):18262. PubMed ID: 33106494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational biology: Role and scope in taming antimicrobial resistance.
    Sharma P; Dahiya S; Kaur P; Kapil A
    Indian J Med Microbiol; 2023; 41():33-38. PubMed ID: 36870746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Overview of antibiotic resistance genes database].
    Yang B; Liang J; Liu L; Li X; Wang Q; Ren Y
    Sheng Wu Gong Cheng Xue Bao; 2020 Dec; 36(12):2582-2597. PubMed ID: 33398956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: a critical review.
    Lagunin AA; Goel RK; Gawande DY; Pahwa P; Gloriozova TA; Dmitriev AV; Ivanov SM; Rudik AV; Konova VI; Pogodin PV; Druzhilovsky DS; Poroikov VV
    Nat Prod Rep; 2014 Nov; 31(11):1585-611. PubMed ID: 25051191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico tools for the analysis of antibiotic biosynthetic pathways.
    Weber T
    Int J Med Microbiol; 2014 May; 304(3-4):230-5. PubMed ID: 24631213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.