BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 33892174)

  • 1. Plasma membrane disruption (PMD) formation and repair in mechanosensitive tissues.
    Hagan ML; Balayan V; McGee-Lawrence ME
    Bone; 2021 Aug; 149():115970. PubMed ID: 33892174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical loading disrupts osteocyte plasma membranes which initiates mechanosensation events in bone.
    Yu K; Sellman DP; Bahraini A; Hagan ML; Elsherbini A; Vanpelt KT; Marshall PL; Hamrick MW; McNeil A; McNeil PL; McGee-Lawrence ME
    J Orthop Res; 2018 Feb; 36(2):653-662. PubMed ID: 28755471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased pericellular matrix production and selection for enhanced cell membrane repair may impair osteocyte responses to mechanical loading in the aging skeleton.
    Hagan ML; Yu K; Zhu J; Vinson BN; Roberts RL; Montesinos Cartagena M; Johnson MH; Wang L; Isales CM; Hamrick MW; McNeil PL; McGee-Lawrence ME
    Aging Cell; 2020 Jan; 19(1):e13056. PubMed ID: 31743583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Osteocyte Membrane Repair Activity via Dietary Vitamin E Deprivation Impairs Osteocyte Survival.
    Hagan ML; Bahraini A; Pierce JL; Bass SM; Yu K; Elsayed R; Elsalanty M; Johnson MH; McNeil A; McNeil PL; McGee-Lawrence ME
    Calcif Tissue Int; 2019 Feb; 104(2):224-234. PubMed ID: 30357446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prkd1 regulates the formation and repair of plasma membrane disruptions (PMD) in osteocytes.
    Tuladhar A; Shaver JC; McGee WA; Yu K; Dorn J; Horne JL; Alhamad DW; Hagan ML; Cooley MA; Zhong R; Bollag W; Johnson M; Hamrick MW; McGee-Lawrence ME
    Bone; 2024 Jun; 186():117147. PubMed ID: 38866124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system.
    Ganesh T; Laughrey LE; Niroobakhsh M; Lara-Castillo N
    Bone; 2020 Aug; 137():115328. PubMed ID: 32201360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications.
    Yan Y; Wang L; Ge L; Pathak JL
    Curr Osteoporos Rep; 2020 Feb; 18(1):67-80. PubMed ID: 31953640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteocyte calcium signaling - A potential translator of mechanical load to mechanobiology.
    Lewis KJ
    Bone; 2021 Dec; 153():116136. PubMed ID: 34339908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanosensation and transduction in osteocytes.
    Klein-Nulend J; Bakker AD; Bacabac RG; Vatsa A; Weinbaum S
    Bone; 2013 Jun; 54(2):182-90. PubMed ID: 23085083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteocyte shape and mechanical loading.
    van Oers RF; Wang H; Bacabac RG
    Curr Osteoporos Rep; 2015 Apr; 13(2):61-6. PubMed ID: 25663071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone marrow mechanotransduction in porcine explants alters kinase activation and enhances trabecular bone formation in the absence of osteocyte signaling.
    Curtis KJ; Coughlin TR; Mason DE; Boerckel JD; Niebur GL
    Bone; 2018 Feb; 107():78-87. PubMed ID: 29154967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Advances in Osteocyte Mechanotransduction.
    Li X; Kordsmeier J; Xiong J
    Curr Osteoporos Rep; 2021 Feb; 19(1):101-106. PubMed ID: 33420631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Osteocyte Mechanotransduction: Recent Developments and Future Directions.
    Hinton PV; Rackard SM; Kennedy OD
    Curr Osteoporos Rep; 2018 Dec; 16(6):746-753. PubMed ID: 30406580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach.
    Verbruggen SW; Vaughan TJ; McNamara LM
    Biomech Model Mechanobiol; 2014 Jan; 13(1):85-97. PubMed ID: 23567965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Connexin Channels in the Response of Mechanical Loading and Unloading of Bone.
    Riquelme MA; Cardenas ER; Xu H; Jiang JX
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32050469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporary disruption of the plasma membrane is required for c-fos expression in response to mechanical stress.
    Grembowicz KP; Sprague D; McNeil PL
    Mol Biol Cell; 1999 Apr; 10(4):1247-57. PubMed ID: 10198070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms in bone mechanotransduction.
    Maycas M; Esbrit P; Gortázar AR
    Histol Histopathol; 2017 Aug; 32(8):751-760. PubMed ID: 27981526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IL-6 alters osteocyte signaling toward osteoblasts but not osteoclasts.
    Bakker AD; Kulkarni RN; Klein-Nulend J; Lems WF
    J Dent Res; 2014 Apr; 93(4):394-9. PubMed ID: 24492932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Lab-On-A-Chip Platform for Stimulating Osteocyte Mechanotransduction and Analyzing Functional Outcomes of Bone Remodeling.
    Truesdell SL; George EL; Van Vranken CC; Saunders MM
    J Vis Exp; 2020 May; (159):. PubMed ID: 32510503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton.
    Klein-Nulend J; Bacabac RG; Bakker AD
    Eur Cell Mater; 2012 Sep; 24():278-91. PubMed ID: 23007912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.