These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 33892174)

  • 1. Plasma membrane disruption (PMD) formation and repair in mechanosensitive tissues.
    Hagan ML; Balayan V; McGee-Lawrence ME
    Bone; 2021 Aug; 149():115970. PubMed ID: 33892174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical loading disrupts osteocyte plasma membranes which initiates mechanosensation events in bone.
    Yu K; Sellman DP; Bahraini A; Hagan ML; Elsherbini A; Vanpelt KT; Marshall PL; Hamrick MW; McNeil A; McNeil PL; McGee-Lawrence ME
    J Orthop Res; 2018 Feb; 36(2):653-662. PubMed ID: 28755471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prkd1 regulates the formation and repair of plasma membrane disruptions (PMD) in osteocytes.
    Tuladhar A; Shaver JC; McGee WA; Yu K; Dorn J; Horne JL; Alhamad DW; Hagan ML; Cooley MA; Zhong R; Bollag W; Johnson M; Hamrick MW; McGee-Lawrence ME
    Bone; 2024 Sep; 186():117147. PubMed ID: 38866124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased pericellular matrix production and selection for enhanced cell membrane repair may impair osteocyte responses to mechanical loading in the aging skeleton.
    Hagan ML; Yu K; Zhu J; Vinson BN; Roberts RL; Montesinos Cartagena M; Johnson MH; Wang L; Isales CM; Hamrick MW; McNeil PL; McGee-Lawrence ME
    Aging Cell; 2020 Jan; 19(1):e13056. PubMed ID: 31743583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of Osteocyte Membrane Repair Activity via Dietary Vitamin E Deprivation Impairs Osteocyte Survival.
    Hagan ML; Bahraini A; Pierce JL; Bass SM; Yu K; Elsayed R; Elsalanty M; Johnson MH; McNeil A; McNeil PL; McGee-Lawrence ME
    Calcif Tissue Int; 2019 Feb; 104(2):224-234. PubMed ID: 30357446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteocyte Sptbn1 Deficiency Alters Cell Survival and Mechanotransduction Following Formation of Plasma Membrane Disruptions (PMD) from Mechanical Loading.
    Hagan ML; Tuladhar A; Yu K; Alhamad DW; Bensreti H; Dorn J; Piedra VM; Cantu N; Stokes EG; Blumenthal D; Roberts RL; Balayan V; Bass SM; Dickerson T; Cartelle AL; Montesinos-Cartagena M; Awad ME; Castro AA; Garland T; Cooley MA; Johnson M; Hamrick MW; McNeil PL; McGee-Lawrence ME
    Calcif Tissue Int; 2024 Nov; 115(5):725-743. PubMed ID: 39276238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system.
    Ganesh T; Laughrey LE; Niroobakhsh M; Lara-Castillo N
    Bone; 2020 Aug; 137():115328. PubMed ID: 32201360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications.
    Yan Y; Wang L; Ge L; Pathak JL
    Curr Osteoporos Rep; 2020 Feb; 18(1):67-80. PubMed ID: 31953640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteocyte calcium signaling - A potential translator of mechanical load to mechanobiology.
    Lewis KJ
    Bone; 2021 Dec; 153():116136. PubMed ID: 34339908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanosensation and transduction in osteocytes.
    Klein-Nulend J; Bakker AD; Bacabac RG; Vatsa A; Weinbaum S
    Bone; 2013 Jun; 54(2):182-90. PubMed ID: 23085083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteocyte shape and mechanical loading.
    van Oers RF; Wang H; Bacabac RG
    Curr Osteoporos Rep; 2015 Apr; 13(2):61-6. PubMed ID: 25663071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone marrow mechanotransduction in porcine explants alters kinase activation and enhances trabecular bone formation in the absence of osteocyte signaling.
    Curtis KJ; Coughlin TR; Mason DE; Boerckel JD; Niebur GL
    Bone; 2018 Feb; 107():78-87. PubMed ID: 29154967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Advances in Osteocyte Mechanotransduction.
    Li X; Kordsmeier J; Xiong J
    Curr Osteoporos Rep; 2021 Feb; 19(1):101-106. PubMed ID: 33420631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo Osteocyte Mechanotransduction: Recent Developments and Future Directions.
    Hinton PV; Rackard SM; Kennedy OD
    Curr Osteoporos Rep; 2018 Dec; 16(6):746-753. PubMed ID: 30406580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach.
    Verbruggen SW; Vaughan TJ; McNamara LM
    Biomech Model Mechanobiol; 2014 Jan; 13(1):85-97. PubMed ID: 23567965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Connexin Channels in the Response of Mechanical Loading and Unloading of Bone.
    Riquelme MA; Cardenas ER; Xu H; Jiang JX
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32050469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporary disruption of the plasma membrane is required for c-fos expression in response to mechanical stress.
    Grembowicz KP; Sprague D; McNeil PL
    Mol Biol Cell; 1999 Apr; 10(4):1247-57. PubMed ID: 10198070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms in bone mechanotransduction.
    Maycas M; Esbrit P; Gortázar AR
    Histol Histopathol; 2017 Aug; 32(8):751-760. PubMed ID: 27981526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IL-6 alters osteocyte signaling toward osteoblasts but not osteoclasts.
    Bakker AD; Kulkarni RN; Klein-Nulend J; Lems WF
    J Dent Res; 2014 Apr; 93(4):394-9. PubMed ID: 24492932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Lab-On-A-Chip Platform for Stimulating Osteocyte Mechanotransduction and Analyzing Functional Outcomes of Bone Remodeling.
    Truesdell SL; George EL; Van Vranken CC; Saunders MM
    J Vis Exp; 2020 May; (159):. PubMed ID: 32510503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.