These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 33892215)
1. Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: Utilization in tissue engineering. Mallakpour S; Tukhani M; Hussain CM Adv Colloid Interface Sci; 2021 Jun; 292():102415. PubMed ID: 33892215 [TBL] [Abstract][Full Text] [Related]
2. Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications. Zennifer A; Senthilvelan P; Sethuraman S; Sundaramurthi D Carbohydr Polym; 2021 Mar; 256():117561. PubMed ID: 33483063 [TBL] [Abstract][Full Text] [Related]
3. Tuning thermoresponsive properties of carboxymethyl cellulose (CMC)-agarose composite bioinks to fabricate complex 3D constructs for regenerative medicine. Budharaju H; Chandrababu H; Zennifer A; Chellappan D; Sethuraman S; Sundaramurthi D Int J Biol Macromol; 2024 Mar; 260(Pt 1):129443. PubMed ID: 38228200 [TBL] [Abstract][Full Text] [Related]
4. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies. Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382 [TBL] [Abstract][Full Text] [Related]
5. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
6. 3D Printable Dynamic Hydrogel: As Simple as it Gets! Díaz A; Herrada-Manchón H; Nunes J; Lopez A; Díaz N; Grande HJ; Loinaz I; Fernández MA; Dupin D Macromol Rapid Commun; 2022 Nov; 43(21):e2200449. PubMed ID: 35904533 [TBL] [Abstract][Full Text] [Related]
7. A review of biomacromolecule-based 3D bioprinting strategies for structure-function integrated repair of skin tissues. Liu H; Xing F; Yu P; Zhe M; Duan X; Liu M; Xiang Z; Ritz U Int J Biol Macromol; 2024 May; 268(Pt 2):131623. PubMed ID: 38642687 [TBL] [Abstract][Full Text] [Related]
8. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412 [TBL] [Abstract][Full Text] [Related]
9. Self-crosslinking hyaluronic acid-carboxymethylcellulose hydrogel enhances multilayered 3D-printed construct shape integrity and mechanical stability for soft tissue engineering. Janarthanan G; Shin HS; Kim IG; Ji P; Chung EJ; Lee C; Noh I Biofabrication; 2020 Sep; 12(4):045026. PubMed ID: 32629438 [TBL] [Abstract][Full Text] [Related]
10. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Murab S; Gupta A; Włodarczyk-Biegun MK; Kumar A; van Rijn P; Whitlock P; Han SS; Agrawal G Carbohydr Polym; 2022 Nov; 296():119964. PubMed ID: 36088004 [TBL] [Abstract][Full Text] [Related]
11. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System. Zhou Y; Yue Z; Chen Z; Wallace G Adv Healthc Mater; 2020 Dec; 9(24):e2001342. PubMed ID: 33103357 [TBL] [Abstract][Full Text] [Related]
12. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications. Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810 [TBL] [Abstract][Full Text] [Related]
13. Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering. Abdollahiyan P; Oroojalian F; Mokhtarzadeh A; de la Guardia M Biotechnol J; 2020 Dec; 15(12):e2000095. PubMed ID: 32869529 [TBL] [Abstract][Full Text] [Related]
14. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Chakraborty A; Roy A; Ravi SP; Paul A Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056 [TBL] [Abstract][Full Text] [Related]
15. A modified 3D printer as a hybrid bioprinting-electrospinning system for use in vascular tissue engineering applications. Fazal F; Diaz Sanchez FJ; Waqas M; Koutsos V; Callanan A; Radacsi N Med Eng Phys; 2021 Aug; 94():52-60. PubMed ID: 34303502 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional (3D) bioprinting of medium toughened dipeptide hydrogel scaffolds with Hofmeister effect. Li X; Jian H; Han Q; Wang A; Li J; Man N; Li Q; Bai S; Li J J Colloid Interface Sci; 2023 Jun; 639():1-6. PubMed ID: 36796110 [TBL] [Abstract][Full Text] [Related]
17. A fluid-supported 3D hydrogel bioprinting method. Beh CW; Yew DS; Chai RJ; Chin SY; Seow Y; Hoon SS Biomaterials; 2021 Sep; 276():121034. PubMed ID: 34332372 [TBL] [Abstract][Full Text] [Related]
18. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
19. Stretchable and self-healable hyaluronate-based hydrogels for three-dimensional bioprinting. Kim HS; Lee KY Carbohydr Polym; 2022 Nov; 295():119846. PubMed ID: 35988998 [TBL] [Abstract][Full Text] [Related]
20. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications. Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]