BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33892256)

  • 21. Deep graph convolutional network for small-molecule retention time prediction.
    Kang Q; Fang P; Zhang S; Qiu H; Lan Z
    J Chromatogr A; 2023 Nov; 1711():464439. PubMed ID: 37865024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cluster and principal component analysis for Kováts' retention indices on apolar and polar stationary phases in gas chromatography.
    Dallos A; Ngo HS; Kresz R; Héberger K
    J Chromatogr A; 2008 Jan; 1177(1):175-82. PubMed ID: 18067899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An accurate and easy procedure to obtain isothermal Kováts retention indices in gas chromatography.
    García-Domínguez JA; Lebrón-Aguilar R; Quintanilla-López JE
    J Sep Sci; 2006 Dec; 29(18):2785-92. PubMed ID: 17305240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of Kovats retention indices of some aliphatic aldehydes and ketones on some stationary phases at different temperatures using artificial neural network.
    Konoz E; Fatemi MH; Faraji R
    J Chromatogr Sci; 2008; 46(5):406-12. PubMed ID: 18492350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. iMatch: a retention index tool for analysis of gas chromatography-mass spectrometry data.
    Zhang J; Fang A; Wang B; Kim SH; Bogdanov B; Zhou Z; McClain C; Zhang X
    J Chromatogr A; 2011 Sep; 1218(37):6522-30. PubMed ID: 21813131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature dependence of the Kováts retention index. The entropy index.
    Görgényi M; Dewulf J; Van Langenhove H
    J Chromatogr A; 2006 Dec; 1137(1):84-90. PubMed ID: 17055518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-column prediction of gas-chromatographic retention of polychlorinated biphenyls by artificial neural networks.
    D'Archivio AA; Incani A; Ruggieri F
    J Chromatogr A; 2011 Dec; 1218(48):8679-90. PubMed ID: 22000780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of gas chromatographic retention indices of a diverse set of toxicologically relevant compounds.
    Garkani-Nejad Z; Karlovits M; Demuth W; Stimpfl T; Vycudilik W; Jalali-Heravi M; Varmuza K
    J Chromatogr A; 2004 Mar; 1028(2):287-95. PubMed ID: 14989482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isothermal Kováts retention indices of sulfur compounds on a poly(5% diphenyl-95% dimethylsiloxane) stationary phase.
    Miller KE; Bruno TJ
    J Chromatogr A; 2003 Jul; 1007(1-2):117-25. PubMed ID: 12924557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving the accuracy of Kováts' retention indices in isothermal gas chromatography.
    Lebrón-Aguilar R; Quintanilla-López JE; García-Domínguez JA
    J Chromatogr A; 2002 Feb; 945(1-2):185-94. PubMed ID: 11860135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative structure-retention relationships for gas chromatographic retention indices of alkylbenzenes with molecular graph descriptors.
    Ivanciuc O; Ivanciuc T; Klein DJ; Seitz WA; Balaban AT
    SAR QSAR Environ Res; 2001 Feb; 11(5-6):419-52. PubMed ID: 11328713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial neural network modeling of Kováts retention indices for noncyclic and monocyclic terpenes.
    Jalali-Heravi M; Fatemi MH
    J Chromatogr A; 2001 Apr; 915(1-2):177-83. PubMed ID: 11358247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast and Precise Hippocampus Segmentation Through Deep Convolutional Neural Network Ensembles and Transfer Learning.
    Ataloglou D; Dimou A; Zarpalas D; Daras P
    Neuroinformatics; 2019 Oct; 17(4):563-582. PubMed ID: 30877605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated procedure for candidate compound selection in GC-MS metabolomics based on prediction of Kovats retention index.
    Mihaleva VV; Verhoeven HA; de Vos RC; Hall RD; van Ham RC
    Bioinformatics; 2009 Mar; 25(6):787-94. PubMed ID: 19176550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of retention indices. VI: Isothermal and temperature-programmed retention indices, methylene value, functionality constant, electronic and steric effects.
    Peng CT
    J Chromatogr A; 2010 Jun; 1217(23):3683-94. PubMed ID: 20227699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DeepReI: Deep learning-based gas chromatographic retention index predictor.
    Vrzal T; Malečková M; Olšovská J
    Anal Chim Acta; 2021 Feb; 1147():64-71. PubMed ID: 33485586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature effects on the retention of n-alkanes and arenes in helium-squalane gas-liquid chromatography. Experiment and molecular simulation.
    Wick CD; Siepman JI; Klotz WL; Schure MR
    J Chromatogr A; 2002 Apr; 954(1-2):181-90. PubMed ID: 12058902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determining the vapour pressures of plant volatiles from gas chromatographic retention data.
    Hoskovec M; Grygarová D; Cvaeka J; Streinz L; Zima J; Verevkin SP; Koutek B
    J Chromatogr A; 2005 Aug; 1083(1-2):161-72. PubMed ID: 16078703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.