These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33892271)

  • 21. The pharmacology of tacrine at N-methyl-d-aspartate receptors.
    Horak M; Holubova K; Nepovimova E; Krusek J; Kaniakova M; Korabecny J; Vyklicky L; Kuca K; Stuchlik A; Ricny J; Vales K; Soukup O
    Prog Neuropsychopharmacol Biol Psychiatry; 2017 Apr; 75():54-62. PubMed ID: 28089695
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pharmacology of triheteromeric N-Methyl-D-Aspartate Receptors.
    Cheriyan J; Balsara RD; Hansen KB; Castellino FJ
    Neurosci Lett; 2016 Mar; 617():240-6. PubMed ID: 26917100
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of tacrine-lophine hybrids via one-pot four component reaction and biological evaluation as acetyl- and butyrylcholinesterase inhibitors.
    da Costa JS; Lopes JP; Russowsky D; Petzhold CL; Borges AC; Ceschi MA; Konrath E; Batassini C; Lunardi PS; Gonçalves CA
    Eur J Med Chem; 2013 Apr; 62():556-63. PubMed ID: 23422935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mg2+ block properties of triheteromeric GluN1-GluN2B-GluN2D NMDA receptors on neonatal rat substantia nigra pars compacta dopaminergic neurones.
    Huang Z; Gibb AJ
    J Physiol; 2014 May; 592(10):2059-78. PubMed ID: 24614743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of two different cholinesterases by tacrine.
    Ahmed M; Rocha JB; Corrêa M; Mazzanti CM; Zanin RF; Morsch AL; Morsch VM; Schetinger MR
    Chem Biol Interact; 2006 Aug; 162(2):165-71. PubMed ID: 16860785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenoxytacrine derivatives: Low-toxicity neuroprotectants exerting affinity to ifenprodil-binding site and cholinesterase inhibition.
    Misiachna A; Svobodova B; Netolicky J; Chvojkova M; Kleteckova L; Prchal L; Novak M; Hrabinova M; Kucera T; Muckova L; Moravcova Z; Karasova JZ; Pejchal J; Blazek F; Malinak D; Hakenova K; Krausova BH; Kolcheva M; Ladislav M; Korabecny J; Pahnke J; Vales K; Horak M; Soukup O
    Eur J Med Chem; 2024 Feb; 266():116130. PubMed ID: 38218127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel class of multitarget anti-Alzheimer benzohomoadamantane‒chlorotacrine hybrids modulating cholinesterases and glutamate NMDA receptors.
    Pérez-Areales FJ; Turcu AL; Barniol-Xicota M; Pont C; Pivetta D; Espargaró A; Bartolini M; De Simone A; Andrisano V; Pérez B; Sabate R; Sureda FX; Vázquez S; Muñoz-Torrero D
    Eur J Med Chem; 2019 Oct; 180():613-626. PubMed ID: 31351393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel tacrine-grafted Ugi adducts as multipotent anti-Alzheimer drugs: a synthetic renewal in tacrine-ferulic acid hybrids.
    Benchekroun M; Bartolini M; Egea J; Romero A; Soriano E; Pudlo M; Luzet V; Andrisano V; Jimeno ML; López MG; Wehle S; Gharbi T; Refouvelet B; de Andrés L; Herrera-Arozamena C; Monti B; Bolognesi ML; Rodríguez-Franco MI; Decker M; Marco-Contelles J; Ismaili L
    ChemMedChem; 2015 Mar; 10(3):523-39. PubMed ID: 25537267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterodimeric tacrine-based acetylcholinesterase inhibitors: investigating ligand-peripheral site interactions.
    Carlier PR; Chow ES; Han Y; Liu J; El Yazal J; Pang YP
    J Med Chem; 1999 Oct; 42(20):4225-31. PubMed ID: 10514292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design, synthesis and evaluation of tacrine-flurbiprofen-nitrate trihybrids as novel anti-Alzheimer's disease agents.
    Chen Y; Sun J; Huang Z; Liao H; Peng S; Lehmann J; Zhang Y
    Bioorg Med Chem; 2013 May; 21(9):2462-70. PubMed ID: 23541836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of rat recombinant GluN1/GluN2A and GluN1/GluN2B NMDA receptors by ethanol at concentrations based on the US/UK drink-drive limit.
    Otton HJ; Janssen A; O'Leary T; Chen PE; Wyllie DJ
    Eur J Pharmacol; 2009 Jul; 614(1-3):14-21. PubMed ID: 19394328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors.
    Najafi Z; Mahdavi M; Saeedi M; Karimpour-Razkenari E; Asatouri R; Vafadarnejad F; Moghadam FH; Khanavi M; Sharifzadeh M; Akbarzadeh T
    Eur J Med Chem; 2017 Jan; 125():1200-1212. PubMed ID: 27863370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NO-donating tacrine derivatives as potential butyrylcholinesterase inhibitors with vasorelaxation activity.
    Chen Y; Sun J; Huang Z; Liao H; Peng S; Lehmann J; Zhang Y
    Bioorg Med Chem Lett; 2013 Jun; 23(11):3162-5. PubMed ID: 23639542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, biological evaluation and molecular modeling study of novel tacrine-carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer's disease.
    Thiratmatrakul S; Yenjai C; Waiwut P; Vajragupta O; Reubroycharoen P; Tohda M; Boonyarat C
    Eur J Med Chem; 2014 Mar; 75():21-30. PubMed ID: 24508831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isoxazolotacrines as non-toxic and selective butyrylcholinesterase inhibitors for Alzheimer's disease.
    Cherif O; Allouche F; Chabchoub F; Chioua M; Soriano E; Yañez M; Cacabelos R; Romero A; López MG; Marco-Contelles J
    Future Med Chem; 2014; 6(17):1883-91. PubMed ID: 25495982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alignment-independent 3D-QSAR and molecular docking studies of tacrine-4-oxo-4H-Chromene hybrids as anti-Alzheimer's agents.
    Manouchehrizadeh E; Mostoufi A; Tahanpesar E; Fereidoonnezhad M
    Comput Biol Chem; 2019 Jun; 80():463-471. PubMed ID: 31170562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular-docking-guided design and synthesis of new IAA-tacrine hybrids as multifunctional AChE/BChE inhibitors.
    Cheng ZQ; Zhu KK; Zhang J; Song JL; Muehlmann LA; Jiang CS; Liu CL; Zhang H
    Bioorg Chem; 2019 Mar; 83():277-288. PubMed ID: 30391700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel tetrahydroacridine derivatives with iodobenzoic acid moiety as multifunctional acetylcholinesterase inhibitors.
    Skibiński R; Czarnecka K; Girek M; Bilichowski I; Chufarova N; Mikiciuk-Olasik E; Szymański P
    Chem Biol Drug Des; 2018 Feb; 91(2):505-518. PubMed ID: 28944565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disruption of S2-M4 linker coupling reveals novel subunit-specific contributions to N-methyl-d-aspartate receptor function and ethanol sensitivity.
    Hughes BA; Woodward JJ
    Neuropharmacology; 2016 Jun; 105():96-105. PubMed ID: 26577016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and beta-amyloid-directed anti-Alzheimer compounds.
    Camps P; Formosa X; Galdeano C; Muñoz-Torrero D; Ramírez L; Gómez E; Isambert N; Lavilla R; Badia A; Clos MV; Bartolini M; Mancini F; Andrisano V; Arce MP; Rodríguez-Franco MI; Huertas O; Dafni T; Luque FJ
    J Med Chem; 2009 Sep; 52(17):5365-79. PubMed ID: 19663388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.