BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33892336)

  • 1. Transverse isotropic modelling of left-ventricle passive filling: Mechanical characterization for epicardial biomaterial manufacturing.
    Jehl JP; Dan P; Voignier A; Tran N; Bastogne T; Maureira P; Cleymand F
    J Mech Behav Biomed Mater; 2021 Jul; 119():104492. PubMed ID: 33892336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure-based finite element model of left ventricle passive inflation.
    Xi C; Kassab GS; Lee LC
    Acta Biomater; 2019 May; 90():241-253. PubMed ID: 30980939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of left-ventricular shape on end-diastolic fiber stress and strain.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2887-90. PubMed ID: 19964050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.
    Masithulela F
    Biomed Mater Eng; 2016 Nov; 27(5):507-525. PubMed ID: 27885998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive ventricular mechanics modelling using MRI of structure and function.
    Wang VY; Lam HI; Ennis DB; Young AA; Nash MP
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):814-21. PubMed ID: 18982680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models.
    Veress AI; Segars WP; Weiss JA; Tsui BM; Gullberg GT
    IEEE Trans Med Imaging; 2006 Dec; 25(12):1604-16. PubMed ID: 17167995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of material parameters and strain energy function on the wall stresses in the left ventricle.
    Behdadfar S; Navarro L; Sundnes J; Maleckar MM; Avril S
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1223-1232. PubMed ID: 28675049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of left-ventricular shape on passive filling properties and end-diastolic fiber stress and strain.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    J Biomech; 2010 Jun; 43(9):1745-53. PubMed ID: 20227697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational modelling of left-ventricular diastolic mechanics: effect of fibre orientation and right-ventricle topology.
    Palit A; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    J Biomech; 2015 Feb; 48(4):604-612. PubMed ID: 25596634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of active fiber stress at the beginning of ejection depends on left-ventricular shape.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2638-41. PubMed ID: 21096187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite element model of the human left ventricular systole.
    Dorri F; Niederer PF; Lunkenheimer PP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epicardial prestrained confinement and residual stresses: a newly observed heart ventricle confinement interface.
    Shi X; Liu Y; Copeland KM; McMahan SR; Zhang S; Butler JR; Hong Y; Cho M; Bajona P; Gao H; Liao J
    J R Soc Interface; 2019 Mar; 16(152):20190028. PubMed ID: 30862283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive diastolic modelling of human ventricles: Effects of base movement and geometrical heterogeneity.
    Palit A; Franciosa P; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    J Biomech; 2017 Feb; 52():95-105. PubMed ID: 28065473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of two quasi-static computational models for assessment of intra-myocardial injection as a therapeutic strategy for heart failure.
    Fan Y; Ronan W; Teh I; Schneider JE; Varela CE; Whyte W; McHugh P; Leen S; Roche E
    Int J Numer Method Biomed Eng; 2019 Sep; 35(9):e3213. PubMed ID: 31062508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of endocardial-epicardial crossover of muscle fibers on left ventricular wall mechanics.
    Bovendeerd PH; Huyghe JM; Arts T; van Campen DH; Reneman RS
    J Biomech; 1994 Jul; 27(7):941-51. PubMed ID: 8063844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infarcted Left Ventricles Have Stiffer Material Properties and Lower Stiffness Variation: Three-Dimensional Echo-Based Modeling to Quantify In Vivo Ventricle Material Properties.
    Fan L; Yao J; Yang C; Tang D; Xu D
    J Biomech Eng; 2015 Aug; 137(8):081005. PubMed ID: 25994130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of cardiac hyperelastic material properties from MRI tissue tagging and diffusion tensor imaging.
    Augenstein KF; Cowan BR; LeGrice IJ; Young AA
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):628-35. PubMed ID: 17354943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.
    Valero C; Navarro B; Navajas D; GarcĂ­a-Aznar JM
    J Mech Behav Biomed Mater; 2016 Sep; 62():222-235. PubMed ID: 27214690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of wall stresses and mechanical heart power in the left ventricle: Finite element modeling versus Laplace analysis.
    Gsell MAF; Augustin CM; Prassl AJ; Karabelas E; Fernandes JF; Kelm M; Goubergrits L; Kuehne T; Plank G
    Int J Numer Method Biomed Eng; 2018 Dec; 34(12):e3147. PubMed ID: 30151998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.