These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 33892369)
1. Evaluation of mercury bioavailability to vegetables in the vicinity of cinnabar mine. Pelcová P; Ridošková A; Hrachovinová J; Grmela J Environ Pollut; 2021 Aug; 283():117092. PubMed ID: 33892369 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of mercury availability to pea parts (Pisum sativum L.) in urban soils: Comparison between diffusive gradients in thin films technique and plant model. Pelcová P; Zouharová I; Ridošková A; Smolíková V Chemosphere; 2019 Nov; 234():373-378. PubMed ID: 31228839 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of mercury bioavailability and phytoaccumulation by means of a DGT technique and of submerged aquatic plants in an aquatic ecosystem situated in the vicinity of a cinnabar mine. Pelcová P; Kopp R; Ridošková A; Grmela J; Štěrbová D Chemosphere; 2022 Feb; 288(Pt 2):132545. PubMed ID: 34648791 [TBL] [Abstract][Full Text] [Related]
4. Fractionation Analysis of Mercury in Soils: A Comparison of Three Techniques for Bioavailable Mercury Fraction Determination. Pelcová P; Ridošková A; Hrachovinová J; Grmela J Environ Toxicol Chem; 2020 Sep; 39(9):1670-1677. PubMed ID: 32516439 [TBL] [Abstract][Full Text] [Related]
5. Assessment of mercury bioavailability in garden soils around a former nonferrous metal mining area using DGT, accumulation in vegetables, and implications for health risk. Senila M; Levei EA; Frentiu T; Mihali C; Angyus SB Environ Monit Assess; 2023 Dec; 195(12):1554. PubMed ID: 38036722 [TBL] [Abstract][Full Text] [Related]
6. Mercury accumulation and transformation of main leaf vegetable crops in Cambosol and Ferrosol soil in China. Yang B; Gao Y; Zhang C; Zheng X; Li B Environ Sci Pollut Res Int; 2020 Jan; 27(1):391-398. PubMed ID: 31792793 [TBL] [Abstract][Full Text] [Related]
7. Predicting mercury bioavailability in soil for earthworm Eisenia fetida using the diffusive gradients in thin films technique. Huu Nguyen V; Yee SK; Hong Y; Moon DH; Han S Environ Sci Pollut Res Int; 2019 Jul; 26(19):19549-19559. PubMed ID: 31079304 [TBL] [Abstract][Full Text] [Related]
8. Characterization of mercury species in soils by HPLC-ICP-MS and measurement of fraction removed by diffusive gradient in thin films. Cattani I; Spalla S; Beone GM; Del Re AA; Boccelli R; Trevisan M Talanta; 2008 Feb; 74(5):1520-6. PubMed ID: 18371812 [TBL] [Abstract][Full Text] [Related]
9. Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia). Gosar M; Sajn R; Biester H Sci Total Environ; 2006 Oct; 369(1-3):150-62. PubMed ID: 16764912 [TBL] [Abstract][Full Text] [Related]
10. Mercury availability by operationally defined fractionation in granulometric distributions of soils and mine wastes from an abandoned cinnabar mine. Fernández-Martínez R; Loredo J; Ordóñez A; Rucandio I Environ Sci Process Impacts; 2014 May; 16(5):1069-75. PubMed ID: 24664209 [TBL] [Abstract][Full Text] [Related]
11. Total mercury, chromium, nickel and other trace chemical element contents in soils at an old cinnabar mine site (Merník, Slovakia): anthropogenic versus natural sources of soil contamination. Kulikova T; Hiller E; Jurkovič Ľ; Filová L; Šottník P; Lacina P Environ Monit Assess; 2019 Apr; 191(5):263. PubMed ID: 30953219 [TBL] [Abstract][Full Text] [Related]
12. Trophic distribution of mercury from an abandoned cinnabar mine within the Záskalská reservoir ecosystem (Czech Republic). Pelcová P; Grmela J; Ridošková A; Kopp R; Hrůzová M; Malý O Environ Sci Pollut Res Int; 2022 Aug; 29(40):61383-61396. PubMed ID: 35445304 [TBL] [Abstract][Full Text] [Related]
13. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Antoniadis V; Shaheen SM; Boersch J; Frohne T; Du Laing G; Rinklebe J J Environ Manage; 2017 Jan; 186(Pt 2):192-200. PubMed ID: 27117508 [TBL] [Abstract][Full Text] [Related]
14. Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Intawongse M; Dean JR Food Addit Contam; 2006 Jan; 23(1):36-48. PubMed ID: 16393813 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of selenium bioavailability to Zhang Z; Shen F; Gu M; Liu Y; Pan L; Shohag MJI; Li T; Wei Y Int J Phytoremediation; 2020; 22(9):952-962. PubMed ID: 32529839 [TBL] [Abstract][Full Text] [Related]
16. [Evaluation and source analysis of the mercury pollution in soils and vegetables around a large-scale zinc smelting plant]. Liu F; Wang SX; Wu QR; Lin H Huan Jing Ke Xue; 2013 Feb; 34(2):712-7. PubMed ID: 23668145 [TBL] [Abstract][Full Text] [Related]
17. Bioavailability of mercury in contaminated soils assessed by the diffusive gradient in thin film technique in relation to uptake by Miscanthus × giganteus. Ridošková A; Pelfrêne A; Douay F; Pelcová P; Smolíková V; Adam V Environ Toxicol Chem; 2019 Feb; 38(2):321-328. PubMed ID: 30620786 [TBL] [Abstract][Full Text] [Related]
18. Vegetable Houttuynia cordata Thunb. as an important human mercury exposure route in Kaiyang county, Guizhou province, SW China. Wang Q; Li Z; Feng X; Li X; Wang D; Sun G; Peng H Ecotoxicol Environ Saf; 2020 Jul; 197():110575. PubMed ID: 32302857 [TBL] [Abstract][Full Text] [Related]
19. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Li R; Wu H; Ding J; Fu W; Gan L; Li Y Sci Rep; 2017 May; 7():46545. PubMed ID: 28484233 [TBL] [Abstract][Full Text] [Related]
20. Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy. Llanos W; Kocman D; Higueras P; Horvat M J Environ Monit; 2011 Dec; 13(12):3460-8. PubMed ID: 22037967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]