These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33892441)

  • 1. 3D printable magnesium-based cements towards the preparation of bioceramics.
    Tonelli M; Faralli A; Ridi F; Bonini M
    J Colloid Interface Sci; 2021 Sep; 598():24-35. PubMed ID: 33892441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-Printed Bioactive Ca
    Yang C; Wang X; Ma B; Zhu H; Huan Z; Ma N; Wu C; Chang J
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5757-5767. PubMed ID: 28117976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnesium-based bioceramics in orthopedic applications.
    Nabiyouni M; Brückner T; Zhou H; Gbureck U; Bhaduri SB
    Acta Biomater; 2018 Jan; 66():23-43. PubMed ID: 29197578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
    Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D plotting in the preparation of newberyite, struvite, and brushite porous scaffolds: using magnesium oxide as a starting material.
    Cao X; Lu H; Liu J; Lu W; Guo L; Ma M; Zhang B; Guo Y
    J Mater Sci Mater Med; 2019 Jul; 30(8):88. PubMed ID: 31325082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extrusion-Based 3D Printing of Calcium Magnesium Phosphate Cement Pastes for Degradable Bone Implants.
    Götz LM; Holeczek K; Groll J; Jüngst T; Gbureck U
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro bioactivity, mechanical behavior and antibacterial properties of mesoporous SiO
    Mubina MSK; Shailajha S; Sankaranarayanan R; Saranya L
    J Mech Behav Biomed Mater; 2019 Dec; 100():103379. PubMed ID: 31398691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sintering densification mechanism and mechanical properties of the 3D-printed high-melting-point-difference magnesium oxide/calcium phosphate composite bio-ceramic scaffold.
    Ge M; Xie D; Yang Y; Tian Z
    J Mech Behav Biomed Mater; 2023 Aug; 144():105978. PubMed ID: 37339536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration.
    Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro studies of novel CaO-SiO2-MgO system composite bioceramics.
    Ni S; Chang J; Chou L
    J Mater Sci Mater Med; 2008 Jan; 19(1):359-67. PubMed ID: 17607509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Status of 3D Printing Technology for Preparing Bioceramic Materials].
    Zhang J; Li M; Tang B; Dong H; Yu Q
    Zhongguo Yi Liao Qi Xie Za Zhi; 2023 Nov; 47(6):651-658. PubMed ID: 38086723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass-ceramic scaffolds containing silica mesophases for bone grafting and drug delivery.
    Vitale-Brovarone C; Baino F; Miola M; Mortera R; Onida B; Verné E
    J Mater Sci Mater Med; 2009 Mar; 20(3):809-20. PubMed ID: 19020955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research on the mechanical properties of bone scaffold reinforced by magnesium alloy/bioceramics composite with stereolithography double channels].
    Li C; Lian Q; Zhuang P; Wang J; Li D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Feb; 32(1):77-81. PubMed ID: 25997270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering.
    Zhang X; Li XW; Li JG; Sun XD
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():362-7. PubMed ID: 25063129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration.
    Lee J; Farag MM; Park EK; Lim J; Yun HS
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():252-60. PubMed ID: 24433911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus.
    Camilleri J; Sorrentino F; Damidot D
    Dent Mater; 2013 May; 29(5):580-93. PubMed ID: 23537569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.