BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 33892442)

  • 1. Solution-processed perylene diimide-ethylene diamine cathodes for aqueous zinc ion batteries.
    Jiang B; Huang T; Yang P; Xi X; Su Y; Liu R; Wu D
    J Colloid Interface Sci; 2021 Sep; 598():36-44. PubMed ID: 33892442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Electrochemical Transformation Reaction of Ammonium-Anchored Heptavanadate Cathode for Long-Life Aqueous Zinc-Ion Batteries.
    Dong W; Du M; Zhang F; Zhang X; Miao Z; Li H; Sang Y; Wang JJ; Liu H; Wang S
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5034-5043. PubMed ID: 33464805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic-Inorganic Hybrid Cathode with Dual Energy-Storage Mechanism for Ultrahigh-Rate and Ultralong-Life Aqueous Zinc-Ion Batteries.
    Ma X; Cao X; Yao M; Shan L; Shi X; Fang G; Pan A; Lu B; Zhou J; Liang S
    Adv Mater; 2022 Feb; 34(6):e2105452. PubMed ID: 34786778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium Storage Mechanism: A Review of Perylene Diimide N-Substituted with a 1,2,4-Triazol-3-yl Ring for Organic Cathode Materials.
    Seong H; Nam W; Moon JH; Kim G; Jin Y; Yoo H; Jung T; Myung Y; Lee K; Choi J
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58451-58461. PubMed ID: 38051908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of N-doped carbon-coated MnO/ZnMn
    Huang T; Cheng M; Yuan Y; Kong L; Chang Z; Bu XH
    Dalton Trans; 2023 Oct; 52(38):13737-13744. PubMed ID: 37712291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin δ-MnO
    Peng H; Fan H; Yang C; Tian Y; Wang C; Sui J
    RSC Adv; 2020 May; 10(30):17702-17712. PubMed ID: 35515586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries.
    Dong H; Li J; Zhao S; Jiao Y; Chen J; Tan Y; Brett DJL; He G; Parkin IP
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):745-754. PubMed ID: 33370108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. V
    Wang D; Liang W; He X; Yang Y; Wang S; Li J; Wang J; Jin H
    ACS Appl Mater Interfaces; 2023 May; 15(17):20876-20884. PubMed ID: 37083362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilized Molybdenum Trioxide Nanowires as Novel Ultrahigh-Capacity Cathode for Rechargeable Zinc Ion Battery.
    He X; Zhang H; Zhao X; Zhang P; Chen M; Zheng Z; Han Z; Zhu T; Tong Y; Lu X
    Adv Sci (Weinh); 2019 Jul; 6(14):1900151. PubMed ID: 31380205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries.
    Kumankuma-Sarpong J; Tang S; Guo W; Fu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium Based All-Organic Dual-Ion Batteries with Stable Low Temperature Operability.
    Jiang B; Su Y; Liu R; Sun Z; Wu D
    Small; 2022 May; 18(20):e2200049. PubMed ID: 35434917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino-Acid-Substituted Perylene Diimide as the Organic Cathode Materials for Lithium-Ion Batteries.
    Seong H; Nam W; Kim G; Moon JH; Jin Y; Kwon SR; Lee JH; Choi J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tremella-like Hydrated Vanadium Oxide Cathode with an Architectural Design Strategy toward Ultralong Lifespan Aqueous Zinc-Ion Batteries.
    Guan X; Sun Q; Sun C; Duan T; Nie W; Liu Y; Zhao K; Cheng H; Lu X
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41688-41697. PubMed ID: 34436858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MnO
    Khamsanga S; Nguyen MT; Yonezawa T; Pornprasertsuk PTR; Pattananuwat P; Tuantranont A; Siwamogsatham S; Kheawhom S
    Int J Mol Sci; 2020 Jun; 21(13):. PubMed ID: 32630149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superior-Performance Aqueous Zinc-Ion Batteries Based on the
    Zhu X; Cao Z; Wang W; Li H; Dong J; Gao S; Xu D; Li L; Shen J; Ye M
    ACS Nano; 2021 Feb; 15(2):2971-2983. PubMed ID: 33492135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Arylene Diimide Frameworks for Highly Stable Lithium Ion Batteries.
    Schon TB; Tilley AJ; Kynaston EL; Seferos DS
    ACS Appl Mater Interfaces; 2017 May; 9(18):15631-15637. PubMed ID: 28430407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordinately Unsaturated Manganese-Based Metal-Organic Frameworks as a High-Performance Cathode for Aqueous Zinc-Ion Batteries.
    Yin C; Pan C; Liao X; Pan Y; Yuan L
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35837-35847. PubMed ID: 34297523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building High Rate Capability and Ultrastable Dendrite-Free Organic Anode for Rechargeable Aqueous Zinc Batteries.
    Liu N; Wu X; Zhang Y; Yin Y; Sun C; Mao Y; Fan L; Zhang N
    Adv Sci (Weinh); 2020 Jul; 7(14):2000146. PubMed ID: 32714747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The displacement reaction mechanism of the CuV
    Yu X; Hu F; Cui F; Zhao J; Guan C; Zhu K
    Dalton Trans; 2020 Jan; 49(4):1048-1055. PubMed ID: 31833505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2,3-diaminophenazine as a high-rate rechargeable aqueous zinc-ion batteries cathode.
    Liang J; Tang M; Cheng L; Zhu Q; Ji R; Liu X; Zhang Q; Wang H; Liu Z
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1262-1268. PubMed ID: 34571310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.