BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 33892442)

  • 21. One-step synthesis of MnO
    Li Z; Huang Y; Zhang J; Jin S; Zhang S; Zhou H
    Nanoscale; 2020 Feb; 12(6):4150-4158. PubMed ID: 32022061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chitosan-Assisted Fabrication of a Network C@V
    Liu C; Li R; Liu W; Shen G; Chen D
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37194-37200. PubMed ID: 34314171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the Mechanism of Single-Crystal MnO
    Xu S; Wang F; Diao Q; Zhang Y; Li G
    Chempluschem; 2023 Aug; 88(8):e202300341. PubMed ID: 37587086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zinc-Ion Storage Mechanism of Polyaniline for Rechargeable Aqueous Zinc-Ion Batteries.
    Gong J; Li H; Zhang K; Zhang Z; Cao J; Shao Z; Tang C; Fu S; Wang Q; Wu X
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ni-Containing Electrolytes for Superior Zinc-Ion Aqueous Batteries with Zinc Hexacyanoferrate Cathodes.
    Rehman R; Zhang X; Chang M; Qin D; Liu Y; Wei P; Huang C; Wang B; Xiong F; Xu Y; Hu P; Han J; Chu PK
    ACS Omega; 2022 Sep; 7(38):33942-33948. PubMed ID: 36188238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyacrylic acid assisted synthesis of free-standing MnO
    Zhang J; Huang Y; Li Z; Gao C; Jin S; Zhang S; Wang X; Zhou H
    Nanotechnology; 2020 Sep; 31(37):375401. PubMed ID: 32480392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cubic Manganese Potassium Hexacyanoferrate Regulated by Controlling of the Water and Defects as a High-Capacity and Stable Cathode Material for Rechargeable Aqueous Zinc-Ion Batteries.
    Cao T; Zhang F; Chen M; Shao T; Li Z; Xu Q; Cheng D; Liu H; Xia Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):26924-26935. PubMed ID: 34060801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electropolymerization of a Carbonyl-Modified Dihydropyrazine Derivative for Aqueous Zinc Batteries with Ultrahigh Cycling Stability.
    Wang D; Bai Y; Zhou Z; Yao Q; Cao W; Ma Y; Wang C
    ACS Appl Mater Interfaces; 2024 May; 16(20):26121-26129. PubMed ID: 38728577
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Freestanding, Hierarchical, and Porous Bilayered Na
    Xu G; Liu X; Huang S; Li L; Wei X; Cao J; Yang L; Chu PK
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):706-716. PubMed ID: 31799821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode.
    Xia C; Guo J; Lei Y; Liang H; Zhao C; Alshareef HN
    Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29226488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and electrochemical performance of VO
    Li R; Yu X; Bian X; Hu F
    RSC Adv; 2019 Oct; 9(60):35117-35123. PubMed ID: 35530719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aqueous Rechargeable Zn-ion Batteries: Strategies for Improving the Energy Storage Performance.
    Mallick S; Raj CR
    ChemSusChem; 2021 May; 14(9):1987-2022. PubMed ID: 33725419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbonized cotton fiber supported flexible organic lithium ion battery cathodes.
    Wang B; Wang H; Chen W; Wu P; Bu L; Zhang L; Wan L
    J Colloid Interface Sci; 2020 Jul; 572():1-8. PubMed ID: 32220761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Stable Metal-Organic Framework with Redox-Active Naphthalene Diimide Core as Cathode Material for Aqueous Zinc-Ion Batteries.
    Liu Y; Li Z; Han Y; Ji Z; Li H; Liu Y; Wei Y; Chen C; He X; Wu M
    ChemSusChem; 2023 Apr; 16(7):e202202305. PubMed ID: 36625243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hierarchical Porous Metallic V
    Ding Y; Peng Y; Chen S; Zhang X; Li Z; Zhu L; Mo LE; Hu L
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44109-44117. PubMed ID: 31687795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A High-Rate and Long-Life Aqueous Rechargeable Mg-Ion Battery Based on an Organic Anode Integrating Diimide and Triazine.
    Cang R; Zhang M; Zhou X; Zhu K; Zhang X; Cao D
    ChemSusChem; 2023 May; 16(10):e202202347. PubMed ID: 36648289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries.
    Deng W; Shen Y; Qian J; Cao Y; Yang H
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21095-9. PubMed ID: 26357982
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mn
    Gou L; Mou KL; Fan XY; Zhao MJ; Wang Y; Xue D; Li DL
    Dalton Trans; 2020 Jan; 49(3):711-718. PubMed ID: 31848556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tailoring Pore Structures of 3D Printed Cellular High-Loading Cathodes for Advanced Rechargeable Zinc-Ion Batteries.
    Ma H; Tian X; Wang T; Tang K; Liu Z; Hou S; Jin H; Cao G
    Small; 2021 Jul; 17(29):e2100746. PubMed ID: 34142434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.