BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 33892453)

  • 1. Insights into the microbial degradation and biochemical mechanisms of carbamates.
    Mishra S; Pang S; Zhang W; Lin Z; Bhatt P; Chen S
    Chemosphere; 2021 Sep; 279():130500. PubMed ID: 33892453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and function of carbamate hydrolase genes cehA and mcd in soils: the distinct role of soil pH.
    Rousidou C; Karaiskos D; Myti D; Karanasios E; Karas PA; Tourna M; Tzortzakakis EA; Karpouzas DG
    FEMS Microbiol Ecol; 2017 Jan; 93(1):. PubMed ID: 27797966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates.
    Chapalamadugu S; Chaudhry GR
    Crit Rev Biotechnol; 1992; 12(5-6):357-89. PubMed ID: 1423649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbamate C-N Hydrolase Gene
    Jiang W; Zhang C; Gao Q; Zhang M; Qiu J; Yan X; Hong Q
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbofuran toxicity and its microbial degradation in contaminated environments.
    Mishra S; Zhang W; Lin Z; Pang S; Huang Y; Bhatt P; Chen S
    Chemosphere; 2020 Nov; 259():127419. PubMed ID: 32593003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the microbial degradation and catalytic mechanisms of chlorpyrifos.
    Huang Y; Zhang W; Pang S; Chen J; Bhatt P; Mishra S; Chen S
    Environ Res; 2021 Mar; 194():110660. PubMed ID: 33387540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of Oxamyl-degrading Bacteria and Identification of cehA as a Novel Oxamyl Hydrolase Gene.
    Rousidou K; Chanika E; Georgiadou D; Soueref E; Katsarou D; Kolovos P; Ntougias S; Tourna M; Tzortzakakis EA; Karpouzas DG
    Front Microbiol; 2016; 7():616. PubMed ID: 27199945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved Metabolic and Evolutionary Themes in Microbial Degradation of Carbamate Pesticides.
    Malhotra H; Kaur S; Phale PS
    Front Microbiol; 2021; 12():648868. PubMed ID: 34305823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanded insecticide catabolic activity gained by a single nucleotide substitution in a bacterial carbamate hydrolase gene.
    Öztürk B; Ghequire M; Nguyen TP; De Mot R; Wattiez R; Springael D
    Environ Microbiol; 2016 Dec; 18(12):4878-4887. PubMed ID: 27312345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial elimination of carbamate pesticides: specific strains and promising enzymes.
    Sun M; Xu W; Zhang W; Guang C; Mu W
    Appl Microbiol Biotechnol; 2022 Sep; 106(18):5973-5986. PubMed ID: 36063179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides.
    Bhatt P; Zhou X; Huang Y; Zhang W; Chen S
    J Hazard Mater; 2021 Jun; 411():125026. PubMed ID: 33461010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial degradation of organophosphorus xenobiotics: metabolic pathways and molecular basis.
    Karpouzas DG; Singh BK
    Adv Microb Physiol; 2006; 51():119-85. PubMed ID: 17091564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of fenobucarb-degrading bacteria from rice paddy soils.
    Kim I; Kim DU; Kim NH; Ka JO
    Biodegradation; 2014 Jun; 25(3):383-94. PubMed ID: 24197220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the key amino acid sites of the carbofuran hydrolase CehA from a newly isolated carbofuran-degrading strain Sphingbium sp. CFD-1.
    Jiang W; Gao Q; Zhang L; Wang H; Zhang M; Liu X; Zhou Y; Ke Z; Wu C; Qiu J; Hong Q
    Ecotoxicol Environ Saf; 2020 Feb; 189():109938. PubMed ID: 31759739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed and enhanced biodegradation of soil-applied diphenamid, carbendazim, and aldicarb.
    Aharonson N; Katan J
    Arch Insect Biochem Physiol; 1993; 22(3-4):451-66. PubMed ID: 8467100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis.
    Sogorb MA; Vilanova E
    Toxicol Lett; 2002 Mar; 128(1-3):215-28. PubMed ID: 11869832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes.
    Olaniran AO; Igbinosa EO
    Chemosphere; 2011 May; 83(10):1297-306. PubMed ID: 21531434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitigation of organophosphorus insecticides from environment: Residual detoxification by bioweapon catalytic scavengers.
    Paidi MK; Satapute P; Haider MS; Udikeri SS; Ramachandra YL; Vo DN; Govarthanan M; Jogaiah S
    Environ Res; 2021 Sep; 200():111368. PubMed ID: 34081974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental Distribution, Metabolic Fate, and Degradation Mechanism of Chlorpyrifos: Recent and Future Perspectives.
    Bhende RS; Jhariya U; Srivastava S; Bombaywala S; Das S; Dafale NA
    Appl Biochem Biotechnol; 2022 May; 194(5):2301-2335. PubMed ID: 35013924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial degradation of the carbamate pesticides desmedipham, phenmedipham, promecarb, and propamocarb.
    Knowles CO; Benezet HJ
    Bull Environ Contam Toxicol; 1981 Oct; 27(4):529-33. PubMed ID: 7306718
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.