BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 33892481)

  • 1. Facile and Low-Cost Fabrication of SiO
    Vidal A; Molina-Prados S; Cros A; Garro N; Pérez-Martínez M; Álvaro R; Mata G; Megías D; Postigo PA
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-Fabricated Plasmonic Nanostructures for Surface-Enhanced Raman Spectroscopy of Bacteria Quorum Sensing Molecules.
    Culhane K; Jiang K; Neumann A; Pinchuk AO
    MRS Adv; 2017; 2(42):2287-2294. PubMed ID: 28989799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography.
    Wu Y; Jiang Y; Zheng X; Jia S; Zhu Z; Ren B; Ma H
    R Soc Open Sci; 2018 Apr; 5(4):172034. PubMed ID: 29765657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct laser induced writing of high precision gold nanosphere SERS patterns.
    Geladari O; Haizmann P; Maier A; Strienz M; Eberle M; Scheele M; Peisert H; Schnepf A; Chassé T; Braun K; Meixner AJ
    Nanoscale Adv; 2024 Feb; 6(4):1213-1217. PubMed ID: 38356631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary Optimized, Monocrystalline Gold Double Wire Gratings as a Novel SERS Sensing Platform.
    Sweedan AO; Pavan MJ; Schatz E; Maaß H; Tsega A; Tzin V; Höflich K; Mörk P; Feichtner T; Bashouti MY
    Small; 2024 Mar; ():e2311937. PubMed ID: 38529743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Objective-Free Ultrasensitive Biosensing on Large-Area Metamaterial Surfaces in the Near-IR.
    Koc N; Belarouci A; Oktem E; Aksu S
    ACS Appl Mater Interfaces; 2024 Jun; 16(25):32516-32523. PubMed ID: 38867603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse.
    Zou T; Zhao B; Xin W; Wang Y; Wang B; Zheng X; Xie H; Zhang Z; Yang J; Guo CL
    Light Sci Appl; 2020; 9():69. PubMed ID: 32351693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing broadband antireflection with Au micropatterns: a combined FDTD simulation and two-beam LIL approach.
    Saeed S; Zia A; Liu R; Liu D; Cao L; Wang Z
    Appl Opt; 2024 Feb; 63(5):1394-1401. PubMed ID: 38437320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Imaging of Plasmonic Concentric Circular Gratings Fabricated by Lens-Axicon Laser Interference Lithography.
    Mazloumi M; Sabat RG
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving grating duty cycle uniformity: amplitude-splitting flat-top beam laser interference lithography.
    Xue D; Deng X; Dun X; Wang J; Wang Z; Cheng X
    Appl Opt; 2024 Mar; 63(8):2065-2069. PubMed ID: 38568648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a perfect sinusoidal grating profile using an artificial neural network for plasmonic-based sensors.
    Godi Tchéré M; Robert S; Dutems J; Bruhier H; Bayard B; Jourlin Y; Jamon D
    Appl Opt; 2024 May; 63(14):3876-3884. PubMed ID: 38856350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Objective homogeneity quantification of a periodic surface using the Gini coefficient.
    Lechthaler B; Pauly C; Mücklich F
    Sci Rep; 2020 Sep; 10(1):14516. PubMed ID: 32883993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones.
    Jonker D; Srivastava K; Lafuente M; Susarrey-Arce A; van der Stam W; van den Berg A; Odijk M; Gardeniers HJGE
    ACS Appl Nano Mater; 2023 Jun; 6(11):9657-9669. PubMed ID: 37325012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D hotspot matrix of Au nanoparticles on Au island film with a spacer layer of dithiol molecules for highly sensitive surface-enhanced Raman spectroscopy.
    Lee DJ; Kim DY
    Sci Rep; 2021 Nov; 11(1):22399. PubMed ID: 34789757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring SERS from complex patterns fabricated by multi-exposure laser interference lithography.
    Kim SJ; Hwang JS; Park JE; Yang M; Kim S
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33892481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced Raman Scattering of Au-Ag bimetallic nanopillars fabricated using surface-plasmon lithography.
    Fan Y; Zhang T; Cai Z; Li D; Yue W; Gong T; Luo Y; Gao P
    Nanotechnology; 2022 Apr; 33(25):. PubMed ID: 35290967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive and Reproducible Gold SERS Sensor Based on Interference Lithography and Electrophoretic Deposition.
    Hwang JS; Yang M
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30469441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS.
    Gisbert Quilis N; Lequeux M; Venugopalan P; Khan I; Knoll W; Boujday S; Lamy de la Chapelle M; Dostalek J
    Nanoscale; 2018 May; 10(21):10268-10276. PubMed ID: 29790495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser Interference Lithography-A Method for the Fabrication of Controlled Periodic Structures.
    Liu R; Cao L; Liu D; Wang L; Saeed S; Wang Z
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368248
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.