These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33892509)

  • 1. Genetic Architecture Underlying Nascent Speciation-The Evolution of Eurasian Pigs under Domestication.
    Xie HB; Wang LG; Fan CY; Zhang LC; Adeola AC; Yin X; Zeng ZB; Wang LX; Zhang YP
    Mol Biol Evol; 2021 Aug; 38(9):3556-3566. PubMed ID: 33892509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytonuclear incompatibility contributes to the early stages of speciation.
    Barnard-Kubow KB; So N; Galloway LF
    Evolution; 2016 Dec; 70(12):2752-2766. PubMed ID: 27677969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When Two Rights Make a Wrong: The Evolutionary Genetics of Plant Hybrid Incompatibilities.
    Fishman L; Sweigart AL
    Annu Rev Plant Biol; 2018 Apr; 69():707-731. PubMed ID: 29505737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic architecture and postzygotic reproductive isolation: evolution of Bateson-Dobzhansky-Muller incompatibilities in a polygenic model.
    Fierst JL; Hansen TF
    Evolution; 2010 Mar; 64(3):675-93. PubMed ID: 19817852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of hybrid incompatibilities along a phylogeny.
    Wang RJ; Ané C; Payseur BA
    Evolution; 2013 Oct; 67(10):2905-22. PubMed ID: 24094342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genetic architecture of hybrid incompatibilities and their effect on barriers to introgression in secondary contact.
    Lindtke D; Buerkle CA
    Evolution; 2015 Aug; 69(8):1987-2004. PubMed ID: 26174368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution and Molecular Control of Hybrid Incompatibility in Plants.
    Chen C; E Z; Lin HX
    Front Plant Sci; 2016; 7():1208. PubMed ID: 27563306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viviparity-driven conflict: more to speciation than meets the fly.
    Zeh JA; Zeh DW
    Ann N Y Acad Sci; 2008; 1133():126-48. PubMed ID: 18559818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid asexuality as a primary postzygotic barrier between nascent species: On the interconnection between asexuality, hybridization and speciation.
    Janko K; Pačes J; Wilkinson-Herbots H; Costa RJ; Roslein J; Drozd P; Iakovenko N; Rídl J; Hroudová M; Kočí J; Reifová R; Šlechtová V; Choleva L
    Mol Ecol; 2018 Jan; 27(1):248-263. PubMed ID: 28987005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential barrier strength and allele frequencies in hybrid zones maintained by sex-biased hybrid incompatibilities.
    Wang RX; Zhao YL
    Heredity (Edinb); 2008 Mar; 100(3):326-36. PubMed ID: 18091771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The limited contribution of reciprocal gene loss to increased speciation rates following whole-genome duplication.
    Muir CD; Hahn MW
    Am Nat; 2015 Jan; 185(1):70-86. PubMed ID: 25560554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating incipient speciation in Arabidopsis lyrata from patterns of transmission ratio distortion.
    Leppälä J; Bokma F; Savolainen O
    Genetics; 2013 Jul; 194(3):697-708. PubMed ID: 23666938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial Selection in Domestication and Breeding Prevents Speciation in Rice.
    Mi J; Li G; Xu C; Yang J; Yu H; Wang G; Li X; Xiao J; Song H; Zhang Q; Ouyang Y
    Mol Plant; 2020 Apr; 13(4):650-657. PubMed ID: 31962168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In search of the Goldilocks zone for hybrid speciation.
    Blanckaert A; Bank C
    PLoS Genet; 2018 Sep; 14(9):e1007613. PubMed ID: 30192761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genome-wide analysis reveals no nuclear dobzhansky-muller pairs of determinants of speciation between S. cerevisiae and S. paradoxus, but suggests more complex incompatibilities.
    Kao KC; Schwartz K; Sherlock G
    PLoS Genet; 2010 Jul; 6(7):e1001038. PubMed ID: 20686707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evolution of hybrid populations to identify Dobzhansky-Muller incompatibility loci.
    Szabo N; Cutter AD
    Ecol Evol; 2024 Feb; 14(2):e10972. PubMed ID: 38333096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward genome-wide identification of Bateson-Dobzhansky-Muller incompatibilities in yeast: a simulation study.
    Li C; Wang Z; Zhang J
    Genome Biol Evol; 2013; 5(7):1261-72. PubMed ID: 23742870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterns of reproductive isolation in a haplodiploid mite, Amphitetranychus viennensis: prezygotic isolation, hybrid inviability and hybrid sterility.
    Sato Y; Fujiwara S; Egas M; Matsuda T; Gotoh T
    BMC Ecol Evol; 2021 Sep; 21(1):177. PubMed ID: 34551724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciation and development.
    Cutter AD
    Evol Dev; 2023 Jul; 25(4-5):289-327. PubMed ID: 37545126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection leads to remarkable variability in the outcomes of hybridisation across replicate hybrid zones.
    McFarlane SE; Jahner JP; Lindtke D; Buerkle CA; Mandeville EG
    Mol Ecol; 2024 Jun; 33(11):e17359. PubMed ID: 38699787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.