These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33892549)

  • 21. Electrohydrodynamics of a compound drop.
    Behjatian A; Esmaeeli A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033012. PubMed ID: 24125349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A 2D electrohydrodynamic model for electrorotation of fluid drops.
    Feng JQ
    J Colloid Interface Sci; 2002 Feb; 246(1):112-21. PubMed ID: 16290391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DC conductivity of a suspension of insulating particles with internal rotation.
    Pannacci N; Lemaire E; Lobry L
    Eur Phys J E Soft Matter; 2009 Apr; 28(4):411-7. PubMed ID: 19337763
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity waves and freestanding vortices in populations of subcritical Quincke rollers.
    Liu ZT; Shi Y; Zhao Y; Chaté H; Shi XQ; Zhang TH
    Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34588304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physics underlying controlled self-assembly of micro- and nanoparticles at a two-fluid interface using an electric field.
    Aubry N; Singh P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056302. PubMed ID: 18643156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct numerical simulation of AC dielectrophoretic particle-particle interactive motions.
    Ai Y; Zeng Z; Qian S
    J Colloid Interface Sci; 2014 Mar; 417():72-9. PubMed ID: 24407661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quincke Oscillations of Colloids at Planar Electrodes.
    Zhang Z; Yuan H; Dou Y; de la Cruz MO; Bishop KJM
    Phys Rev Lett; 2021 Jun; 126(25):258001. PubMed ID: 34241531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlled formation of colloidal structures by an alternating electric field and its mechanisms.
    Zhang KQ; Liu XY
    J Chem Phys; 2009 May; 130(18):184901. PubMed ID: 19449951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of frequency and gravity on the orientation of active metallo-dielectric Janus particles translating under a uniform applied alternating-current electric field.
    Boymelgreen A; Kunti G; García-Sánchez P; Yossifon G
    Soft Matter; 2024 May; 20(20):4143-4151. PubMed ID: 38738604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deposition of Colloidal Drops Containing Ellipsoidal Particles: Competition between Capillary and Hydrodynamic Forces.
    Kim DO; Pack M; Hu H; Kim H; Sun Y
    Langmuir; 2016 Nov; 32(45):11899-11906. PubMed ID: 27788012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Poiseuille flow of a Quincke suspension.
    Cēbers A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032305. PubMed ID: 25314444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrophoresis in strong electric fields.
    Barany S
    Adv Colloid Interface Sci; 2009; 147-148():36-43. PubMed ID: 19041962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of Drop Formation in an Electric Field.
    Notz PK; Basaran OA
    J Colloid Interface Sci; 1999 May; 213(1):218-237. PubMed ID: 10191025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrolyte-Dependent Aggregation of Colloidal Particles near Electrodes in Oscillatory Electric Fields.
    Woehl TJ; Heatley KL; Dutcher CS; Talken NH; Ristenpart WD
    Langmuir; 2014 May; 30(17):4887-94. PubMed ID: 24708479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Concentrating particles on drop surfaces using external electric fields.
    Nudurupati S; Janjua M; Aubry N; Singh P
    Electrophoresis; 2008 Mar; 29(5):1164-72. PubMed ID: 18306181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forces acting on dielectric colloidal spheres at a water/nonpolar fluid interface in an external electric field. 2. Charged particles.
    Danov KD; Kralchevsky PA
    J Colloid Interface Sci; 2013 Sep; 405():269-77. PubMed ID: 23759324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AC electrokinetic templating of colloidal particle assemblies: effect of electrohydrodynamic flows.
    Wood JA; Docoslis A
    Langmuir; 2012 Mar; 28(9):4586-97. PubMed ID: 22324312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Field-Induced Layering of Colloidal Crystals.
    Trau M; Saville DA; Aksay IA
    Science; 1996 May; 272(5262):706-9. PubMed ID: 8662565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active colloid with externally induced periodic bipolar motility and its cooperative motion.
    Kato AN; Takeuchi KA; Sano M
    Soft Matter; 2022 Jul; 18(29):5435-5445. PubMed ID: 35820174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cross-stream migration of drops suspended in Poiseuille flow in the presence of an electric field.
    Nath B; Biswas G; Dalal A; Sahu KC
    Phys Rev E; 2018 Jun; 97(6-1):063106. PubMed ID: 30011518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.