These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33892555)

  • 1. Strategy of boundary discretization in numerical simulation of laser propagation in skin tissue with vascular lesions.
    Jia H; Chen B; Li D; Jin Y
    Math Biosci Eng; 2021 Mar; 18(3):2455-2472. PubMed ID: 33892555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boundary discretization in the numerical simulation of light propagation in skin tissue: problem and strategy.
    Jia H; Chen B; Li D; Zhang Y
    J Biomed Opt; 2015 Feb; 20(2):25007. PubMed ID: 25710306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of voxel size and photon number in voxel-based Monte Carlo method: criteria and applications.
    Li D; Chen B; Ran WY; Wang GX; Wu WJ
    J Biomed Opt; 2015; 20(9):095014. PubMed ID: 26417866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light distributions in a port wine stain model containing multiple cylindrical and curved blood vessels.
    Lucassen GW; Verkruysse W; Keijzer M; van Gemert MJ
    Lasers Surg Med; 1996; 18(4):345-57. PubMed ID: 8732573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of radiation transport in human skin with rigorous treatment of curved tissue boundaries.
    Majaron B; Milanič M; Premru J
    J Biomed Opt; 2015 Jan; 20(1):015002. PubMed ID: 25604544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-grid mesh-based Monte Carlo algorithm for efficient photon transport simulations in complex three-dimensional media.
    Yan S; Tran AP; Fang Q
    J Biomed Opt; 2019 Feb; 24(2):1-4. PubMed ID: 30788914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VMC++ validation for photon beams in the energy range of 20-1000 keV.
    Terribilini D; Fix MK; Frei D; Volken W; Manser P
    Med Phys; 2010 Oct; 37(10):5218-27. PubMed ID: 21089755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light transport in tissue by 3D Monte Carlo: influence of boundary voxelization.
    Binzoni T; Leung TS; Giust R; Rüfenacht D; Gandjbakhche AH
    Comput Methods Programs Biomed; 2008 Jan; 89(1):14-23. PubMed ID: 18045725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling voxel-based Monte Carlo light transport with curved and oblique boundary surfaces.
    Tran AP; Jacques S
    J Biomed Opt; 2020 Feb; 25(2):1-13. PubMed ID: 32100491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
    Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J
    J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the assessment of port wine stain parameters from skin surface temperature following a diagnostic laser pulse.
    Gabay S; Lucassen GW; Verkruysse W; van Gemert MJ
    Lasers Surg Med; 1997; 20(2):179-87. PubMed ID: 9047172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tetrahedron-based inhomogeneous Monte Carlo optical simulator.
    Shen H; Wang G
    Phys Med Biol; 2010 Feb; 55(4):947-62. PubMed ID: 20090182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm.
    Fippel M
    Med Phys; 1999 Aug; 26(8):1466-75. PubMed ID: 10501045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions.
    Milanic M; Majaron B
    J Biomed Opt; 2011 Dec; 16(12):128002. PubMed ID: 22191938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in Monte Carlo Simulation for Light Propagation in Tissue.
    Periyasamy V; Pramanik M
    IEEE Rev Biomed Eng; 2017; 10():122-135. PubMed ID: 28816674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose calculation validation of Vmc++ for photon beams.
    Gardner J; Siebers J; Kawrakow I
    Med Phys; 2007 May; 34(5):1809-18. PubMed ID: 17555262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of voxel warping and energy mapping approaches for fast 4D Monte Carlo dose calculations in deformed geometries using VMC++.
    Heath E; Tessier F; Kawrakow I
    Phys Med Biol; 2011 Aug; 56(16):5187-202. PubMed ID: 21791733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of diffusion approximation and Monte Carlo based finite element models for simulating thermal responses to laser irradiation in discrete vessels.
    Zhang R; Verkruysse W; Aguilar G; Nelson JS
    Phys Med Biol; 2005 Sep; 50(17):4075-86. PubMed ID: 16177531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the distribution of laser light in port-wine stains with the Monte Carlo method.
    Smithies DJ; Butler PH
    Phys Med Biol; 1995 May; 40(5):701-31. PubMed ID: 7652003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.