These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33892567)

  • 1. A mathematical model for Vibrio-phage interactions.
    Botelho C; Dzevela Kong J; Ali Ber Lucien M; Shuai Z; Wang H
    Math Biosci Eng; 2021 Mar; 18(3):2688-2712. PubMed ID: 33892567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the role of bacteriophage in the control of cholera outbreaks.
    Jensen MA; Faruque SM; Mekalanos JJ; Levin BR
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4652-7. PubMed ID: 16537404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteria-bacteriophage cycles facilitate Cholera outbreak cycles: an indirect Susceptible-Infected-Recovered-Bacteria- Phage (iSIRBP) model-based mathematical study.
    Habees AA; Aldabbas E; Bragazzi NL; Kong JD
    J Biol Dyn; 2022 Dec; 16(1):29-43. PubMed ID: 34994295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission dynamics of cholera with hyperinfectious and hypoinfectious vibrios: mathematical modelling and control strategies.
    Lin JZ; Xu R; Tian XH
    Math Biosci Eng; 2019 May; 16(5):4339-4358. PubMed ID: 31499665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of cholera typing phages. IV. Phage-resistant mutants of Vibrio cholerae.
    MUKERJEE S
    Ann Biochem Exp Med; 1962 Jan; 22():1-4. PubMed ID: 14477037
    [No Abstract]   [Full Text] [Related]  

  • 6. Hemolytic Vibrio cholerae O1 that is sensitive to Mukerjee's cholera phage IV and the phage produced by the hemolytic vibrio lysogenized with the infection of Mukerjee's cholera phage IV.
    Iwanaga M; Nakamura S; Kuyyakanond T
    Microbiol Immunol; 1989; 33(8):609-18. PubMed ID: 2779469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of cholera dynamics with intrinsic growth considering constant interventions.
    Brhane KW; Ahmad AG; Hina H; Emadifar H
    Sci Rep; 2024 Feb; 14(1):4616. PubMed ID: 38409239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling the modeling of phage-bacteria interaction and cholera epidemiological model with and without optimal control.
    Ndongmo Teytsa HM; Tsanou B; Bowong S; Lubuma J
    J Theor Biol; 2021 Mar; 512():110537. PubMed ID: 33197461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STUDIES ON TYPING OF CHOLERA VIBRIOS BY BACTERIOPHAGE. V. GEOGRAPHICAL DISTRIBUTION OF PHAGE-TYPES OF VIBRIO CHOLERAE.
    MUKERJEE S; ROY UK; RUDRA BC
    Ann Biochem Exp Med; 1963 Dec; 23():523-30. PubMed ID: 14154194
    [No Abstract]   [Full Text] [Related]  

  • 10. EFFECT OF MUKERJEE'S GROUP IV PHAGE ON EL TOR VIBRIOS.
    MONSUR KA; RIZVI SS; HUQ MI; BENENSON AS
    Bull World Health Organ; 1965; 32(2):211-6. PubMed ID: 14310908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifurcation analysis of a phage-bacteria interaction model with prophage induction.
    Ndongmo Teytsa HM; Tsanou B; Bowong S; Lubuma JM
    Math Med Biol; 2021 Mar; 38(1):28-58. PubMed ID: 32720676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The
    Gutierrez-Rodarte M; Kolappan S; Burrell BA; Craig L
    J Biol Chem; 2019 Oct; 294(43):15698-15710. PubMed ID: 31471320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global stability of an age-structured cholera model.
    Yang J; Qiu Z; Li XZ
    Math Biosci Eng; 2014 Jun; 11(3):641-65. PubMed ID: 24506555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presence of lysogenic phage in the outbreak strains of Vibrio cholerae O139.
    Mitra SN; Kar S; Ghosh RK; Pajni S; Ghosh A
    J Med Microbiol; 1995 Jun; 42(6):399-403. PubMed ID: 7791203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrio cholerae serogroup O1 in northeast Thailand.
    Kuyyakanond T; Nakamura S; Manmontri W; Iwanaga M
    J Clin Microbiol; 1990 May; 28(5):872-5. PubMed ID: 2191009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of an age-of-infection cholera model.
    Brauer F; Shuai Z; van den Driessche P
    Math Biosci Eng; 2013; 10(5-6):1335-49. PubMed ID: 24245619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic.
    Capone F; De Cataldis V; De Luca R
    J Math Biol; 2015 Nov; 71(5):1107-31. PubMed ID: 25424418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global stability for cholera epidemic models.
    Tian JP; Wang J
    Math Biosci; 2011 Jul; 232(1):31-41. PubMed ID: 21513717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phage for treatment of Vibrio cholerae infection.
    Mittal M; Tripathi S; Saini A; Mani I
    Prog Mol Biol Transl Sci; 2023; 201():21-39. PubMed ID: 37770173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Metabolite Produced by Gut Microbes Represses Phage Infections in
    Zang Z; Park KJ; Gerdt JP
    ACS Chem Biol; 2022 Sep; 17(9):2396-2403. PubMed ID: 35960903
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.