These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33893046)

  • 1. Addressing Research Bottlenecks to Crop Productivity.
    Reynolds M; Atkin OK; Bennett M; Cooper M; Dodd IC; Foulkes MJ; Frohberg C; Hammer G; Henderson IR; Huang B; Korzun V; McCouch SR; Messina CD; Pogson BJ; Slafer GA; Taylor NL; Wittich PE
    Trends Plant Sci; 2021 Jun; 26(6):607-630. PubMed ID: 33893046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics.
    Marsh JI; Hu H; Gill M; Batley J; Edwards D
    Theor Appl Genet; 2021 Jun; 134(6):1677-1690. PubMed ID: 33852055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives.
    Yang W; Feng H; Zhang X; Zhang J; Doonan JH; Batchelor WD; Xiong L; Yan J
    Mol Plant; 2020 Feb; 13(2):187-214. PubMed ID: 31981735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput phenotyping for crop improvement in the genomics era.
    Mir RR; Reynolds M; Pinto F; Khan MA; Bhat MA
    Plant Sci; 2019 May; 282():60-72. PubMed ID: 31003612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How can we harness quantitative genetic variation in crop root systems for agricultural improvement?
    Topp CN; Bray AL; Ellis NA; Liu Z
    J Integr Plant Biol; 2016 Mar; 58(3):213-25. PubMed ID: 26911925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modernising breeding for orphan crops: tools, methodologies, and beyond.
    Ribaut JM; Ragot M
    Planta; 2019 Sep; 250(3):971-977. PubMed ID: 31256257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reap the crop wild relatives for breeding future crops.
    Bohra A; Kilian B; Sivasankar S; Caccamo M; Mba C; McCouch SR; Varshney RK
    Trends Biotechnol; 2022 Apr; 40(4):412-431. PubMed ID: 34629170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting the versatile buckwheat: reinvigorating genetic gains through integrated breeding and genomics approach.
    Joshi DC; Chaudhari GV; Sood S; Kant L; Pattanayak A; Zhang K; Fan Y; Janovská D; Meglič V; Zhou M
    Planta; 2019 Sep; 250(3):783-801. PubMed ID: 30623242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modern phenomics to empower holistic crop science, agronomy, and breeding research.
    Jiang N; Zhu XG
    J Genet Genomics; 2024 Aug; 51(8):790-800. PubMed ID: 38734136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic innovation for crop improvement.
    Bevan MW; Uauy C; Wulff BB; Zhou J; Krasileva K; Clark MD
    Nature; 2017 Mar; 543(7645):346-354. PubMed ID: 28300107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops.
    Furbank RT; Jimenez-Berni JA; George-Jaeggli B; Potgieter AB; Deery DM
    New Phytol; 2019 Sep; 223(4):1714-1727. PubMed ID: 30937909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomics of crop wild relatives: expanding the gene pool for crop improvement.
    Brozynska M; Furtado A; Henry RJ
    Plant Biotechnol J; 2016 Apr; 14(4):1070-85. PubMed ID: 26311018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breeding for cuticle-associated traits in crop species: traits, targets, and strategies.
    Petit J; Bres C; Mauxion JP; Bakan B; Rothan C
    J Exp Bot; 2017 Nov; 68(19):5369-5387. PubMed ID: 29036305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterosis, stress, and the environment: a possible road map towards the general improvement of crop yield.
    Blum A
    J Exp Bot; 2013 Nov; 64(16):4829-37. PubMed ID: 24014873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tackling G × E × M interactions to close on-farm yield-gaps: creating novel pathways for crop improvement by predicting contributions of genetics and management to crop productivity.
    Cooper M; Voss-Fels KP; Messina CD; Tang T; Hammer GL
    Theor Appl Genet; 2021 Jun; 134(6):1625-1644. PubMed ID: 33738512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition.
    Dawson IK; Powell W; Hendre P; Bančič J; Hickey JM; Kindt R; Hoad S; Hale I; Jamnadass R
    New Phytol; 2019 Oct; 224(1):37-54. PubMed ID: 31063598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in cereal genomics and applications in crop breeding.
    Varshney RK; Hoisington DA; Tyagi AK
    Trends Biotechnol; 2006 Nov; 24(11):490-9. PubMed ID: 16956681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress, challenges and the future of crop genomes.
    Michael TP; VanBuren R
    Curr Opin Plant Biol; 2015 Apr; 24():71-81. PubMed ID: 25703261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of genomic changes with crop domestication and breeding.
    Shi J; Lai J
    Curr Opin Plant Biol; 2015 Apr; 24():47-53. PubMed ID: 25656221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.