BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33893088)

  • 21. Properties for Thermally Conductive Interfaces with Wide Band Gap Materials.
    Khan S; Angeles F; Wright J; Vishwakarma S; Ortiz VH; Guzman E; Kargar F; Balandin AA; Smith DJ; Jena D; Xing HG; Wilson R
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36178-36188. PubMed ID: 35895030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoscale Energy Transport Dynamics across Nonbonded Solid-Molecule Interfaces and in Molecular Thin Films.
    He X; Yang DS
    J Phys Chem Lett; 2023 Dec; 14(50):11457-11464. PubMed ID: 38085824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interface thermal conductance of van der Waals monolayers on amorphous substrates.
    Correa GC; Foss CJ; Aksamija Z
    Nanotechnology; 2017 Mar; 28(13):135402. PubMed ID: 28157087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization.
    Hopkins PE; Baraket M; Barnat EV; Beechem TE; Kearney SP; Duda JC; Robinson JT; Walton SG
    Nano Lett; 2012 Feb; 12(2):590-5. PubMed ID: 22214512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular dynamics studies of material property effects on thermal boundary conductance.
    Zhou XW; Jones RE; Duda JC; Hopkins PE
    Phys Chem Chem Phys; 2013 Jul; 15(26):11078-87. PubMed ID: 23715116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission.
    Zheng W; Huang B; Li H; Koh YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of chemical bonding on heat transport across interfaces.
    Losego MD; Grady ME; Sottos NR; Cahill DG; Braun PV
    Nat Mater; 2012 Apr; 11(6):502-6. PubMed ID: 22522593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hierarchically hydrogen-bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance.
    Zhang L; Liu L
    Nanoscale; 2019 Feb; 11(8):3656-3664. PubMed ID: 30741290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal conductance of metal-diamond interfaces at high pressure.
    Hohensee GT; Wilson RB; Cahill DG
    Nat Commun; 2015 Mar; 6():6578. PubMed ID: 25744853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduced Thermal Transport in the Graphene/MoS
    Srinivasan S; Balasubramanian G
    Langmuir; 2018 Mar; 34(10):3326-3335. PubMed ID: 29429341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal Boundary Conductance Across Heteroepitaxial ZnO/GaN Interfaces: Assessment of the Phonon Gas Model.
    Gaskins JT; Kotsonis G; Giri A; Ju S; Rohskopf A; Wang Y; Bai T; Sachet E; Shelton CT; Liu Z; Cheng Z; Foley BM; Graham S; Luo T; Henry A; Goorsky MS; Shiomi J; Maria JP; Hopkins PE
    Nano Lett; 2018 Dec; 18(12):7469-7477. PubMed ID: 30412411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation.
    Liu B; Baimova JA; Reddy CD; Law AW; Dmitriev SV; Wu H; Zhou K
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18180-8. PubMed ID: 25308778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Impact of Interlayer Rotation on Thermal Transport Across Graphene/Hexagonal Boron Nitride van der Waals Heterostructure.
    Ren W; Ouyang Y; Jiang P; Yu C; He J; Chen J
    Nano Lett; 2021 Mar; 21(6):2634-2641. PubMed ID: 33656896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal Transport and Mechanical Stress Mapping of a Compression Bonded GaN/Diamond Interface for Vertical Power Devices.
    Delmas W; Jarzembski A; Bahr M; McDonald A; Hodges W; Lu P; Deitz J; Ziade E; Piontkowski ZT; Yates L
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):11003-11012. PubMed ID: 38373710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. van der Waals Graphene Kirigami Heterostructure for Strain-Controlled Thermal Transparency.
    Gao Y; Xu B
    ACS Nano; 2018 Nov; 12(11):11254-11262. PubMed ID: 30427663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced energy transport owing to nonlinear interface interaction.
    Su R; Yuan Z; Wang J; Zheng Z
    Sci Rep; 2016 Jan; 6():19628. PubMed ID: 26787363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thickness-Independent Vibrational Thermal Conductance across Confined Solid-Solution Thin Films.
    Giri A; Cheaito R; Gaskins JT; Mimura T; Brown-Shaklee HJ; Medlin DL; Ihlefeld JF; Hopkins PE
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12541-12549. PubMed ID: 33663216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular self-assembled monolayers anomalously enhance thermal conductance across polymer-semiconductor interfaces.
    He J; Tao L; Xian W; Arbaugh T; Li Y
    Nanoscale; 2022 Dec; 14(47):17681-17693. PubMed ID: 36416469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers.
    Rastgarkafshgarkolaei R; Zhang J; Polanco CA; Le NQ; Ghosh AW; Norris PM
    Nanoscale; 2019 Mar; 11(13):6254-6262. PubMed ID: 30882127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.